# **CCS Technical Documentation NPM-8 Series Transceivers**

# 9. Troubleshooting

Issue 1 07/2002 ©Nokia Corporation

#### **Contents**

|                                                                           | Page No |
|---------------------------------------------------------------------------|---------|
| Transceiver Troubleshooting                                               | 5       |
| Troubleshooting steps                                                     |         |
| General instructions                                                      | 5       |
| Baseband Troubleshooting                                                  | 6       |
| Baseband Testpoints                                                       | 6       |
| Fault-Finding Charts                                                      | 6       |
| Phone is dead                                                             |         |
| Flash programming does not work                                           | 9       |
| Power does not stay on or phone is jammed                                 | 11      |
| Display information: "Contact Service"                                    | 12      |
| Phone does not register onto the network, or the phone cannot make a call | 13      |
| SIM-related faults                                                        | 14      |
| Insert SIM card fault                                                     | 14      |
| SIM-Card rejected                                                         | 15      |
| Audio-related faults                                                      | 16      |
| Charging failure                                                          | 18      |
| RF Troubleshooting                                                        | 19      |
| General Description of the RF Circuits                                    | 20      |
| Receiver Signal Path                                                      |         |
| Transmitter Signal Path                                                   | 21      |
| PLL                                                                       | 22      |
| Key RF Component Placement                                                | 25      |
| Power Supply Configuration                                                | 26      |
| Receiver                                                                  | 28      |
| General Instructions for GSM850 RX Troubleshooting                        | 28      |
| Troubleshooting Chart for GSM850 Receiver                                 | 30      |
| General Instructions for GSM1900 RX Troubleshooting                       | 31      |
| Troubleshooting Chart for PCS Receiver                                    | 33      |
| Measurement Points in the Receiver                                        | 34      |
| Transmitter                                                               | 36      |
| Measurement Points for the Transmitter                                    | 36      |
| General Instructions for GSM TX Troubleshooting                           | 37      |
| Troubleshooting Chart for GSM850 Transmitter                              | 38      |
| General instructions for PCS TX troubleshooting                           | 40      |
| Synthesizer                                                               |         |
| General Instructions for Synthesizer Troubleshooting                      | 43      |
| 26 MHz Reference Oscillator ( VCXO )                                      |         |
| VCO                                                                       |         |
| Troubleshooting Chart for PLL Synthesizer                                 | 46      |
| Measurement Points for the PLL                                            | 47      |
| Frequency Lists                                                           | 49      |
| Alignment                                                                 |         |
| HDbc2 Manual Align with Phoenix                                           |         |
| VCO Calibration                                                           |         |
| RX Calibration                                                            |         |
| RX Channel Select Filter                                                  | 55      |

# **CCS Technical Documentation**

| RX Band Filter Response | 56 |
|-------------------------|----|
| Tx Tuning               |    |
| TX Power Tuning GSM850  |    |
| TX Power Tuning PCS1900 |    |
| TX I/Q Tuning           |    |
| RF Control              |    |
| Call Testing            |    |

# **Transceiver Troubleshooting**

#### Troubleshooting steps

The following hints should help to find the cause of the problem when the circuitry seems to be faulty. Troubleshooting instructions are divided into sections:

- 1 Phone is totally dead
- 2 Power does not stay on or the phone is jammed
- 3 Flash programming does not work
- 4 Display is not working
- 5 Plug in SIM card is out of order (insert SIM card)
- 6 Audio fault
- 7 Charging fault

First, carry out a through visual check of the module. Ensure in particular that:

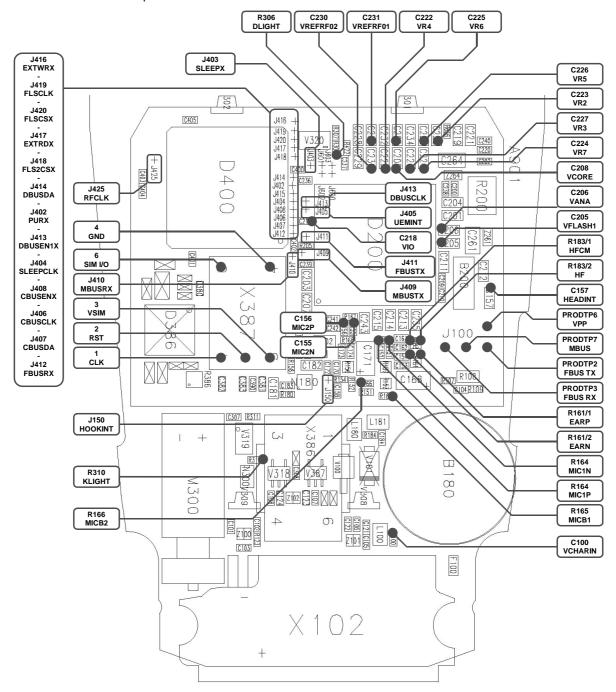
- a) there are no mechanical damages
- b) soldered joints are OK.

#### **General instructions**

Most semiconductors are static-discharge sensitive! ESD protection must be taken care of during repair (ground straps and ESD soldering irons). Mjoelner, PA, UEM, UPP, and Flash are moisture sensitive and must be pre-baked prior to soldering, if they have been out of their vacuum package longer than the specified time.

- Connect test jig (MJS-37) to computer with DAU-9S cable or to FPS-8 Flash Prommer with AXS-4 serial cable.
- Make sure that you have PKD-1 dongle connected to computer's parallel port.
- Connect DC power supply to module test jig (MJS-37) with FLC-2 cable.
- Set the MJS-37 supply voltage to 8-12 $V_{DC}$ . If the input-voltage exceeds 12 $V_{DC}$ , the MJS-37 jig may be damaged.

Note: By default the MJS-37 supplies the phone with  $4.1V_{DC}$ . If other output voltages are needed, it is possible to modify MJS-37 to support this by removing R110 and mounting S104. See the MJS-37 schematic for more info.


- When doing BB energy management (EM) calibrations, use JBV-1 jig and DC supply voltage 12 – 15 V.
  - $\bullet$  JBV-1's current consumption is  $\sim$  40 mA with 3.9 V supply voltage and  $\sim$  80 mA with 15 V supply voltage.
- Set the phone module to test jig (MJS-37) and start Phoenix service software.
   Initialize connection to phone (use FBUS driver when using DAU-9S and COM-BOX driver when using FPS-8).

NPM-8

# **Baseband Troubleshooting**

#### **Baseband Testpoints**

Baseband testpoint PWB Placement



#### Fault-Finding Charts

In this section, fault-finding charts are provided for the most common NPM-8 errors.


NOTE: Since both D200 (UEM) and D400(UPP) are underfilled, they cannot be replaced. If either D200 or D400 is defective, the entire PWB has to be discarded.

#### Phone is dead

This means that the phone does not draw any current at all when supply is connected and/or the power key is pressed.

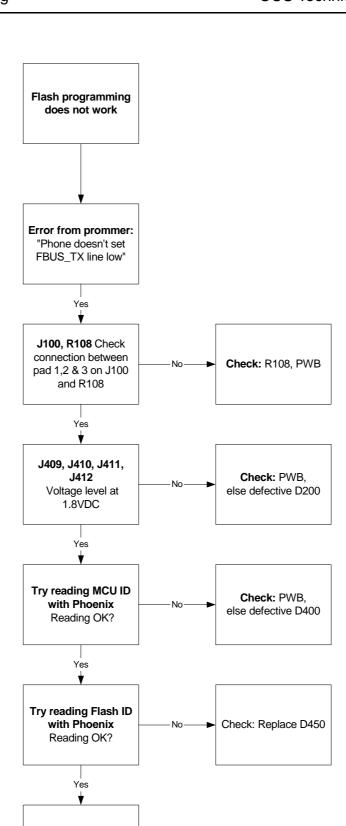
It is assumed that the voltage supplied is 3.6 VDC. The UEM will prevent any functionality whatsoever at battery/supply levels below 2.9 VDC.





#### Flash programming does not work

The flash programming can only be done via the pads on the PWB (J100).

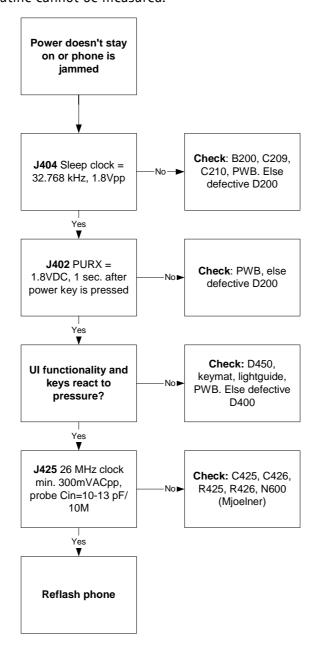

In case of flash failure in FLALI station, the problem is most likely related to SMD problems. Possible failures could be short-circuit of balls under  $\mu$ BGAs (UEM, UPP, FLASH), or missing or misaligned components.

In flash programming error cases, the flash prommer can give some information about a fault.

The fault information messages could be:

- Phone doesn't set FBUS TX line low

Because of the use of uBGA components, it is not possible to verify if there is a short circuit in control- and address lines of MCU (UPP) and memory (flash).

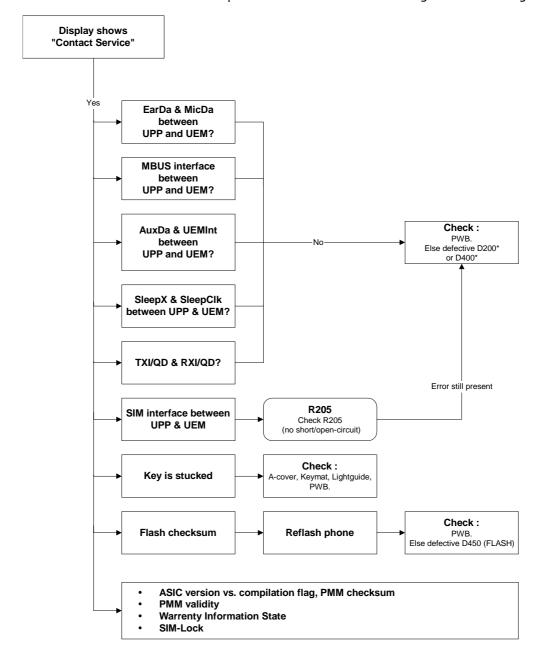



Reflash phone

#### Power does not stay on or phone is jammed

If this kind of failure is presenting itself immediately after FLALI, it is most likely caused by ASICs missing contact with PWB.

If for some reason the MCU does not service the watchdog register within the UEM, the operations watchdog will run out after approximately 32 seconds. Unfortunately, the service routine cannot be measured.

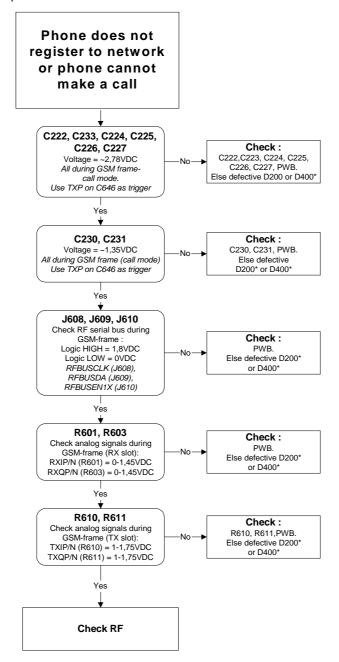



#### 9. Troubleshooting

# Display information: "Contact Service"

This error can only happen at power up where several self-tests run. If any of these test cases fails, the display will show the message: "Contact Service".

It's individual test cases, so the following list of possible errors has no chronological order. Use common sense and experience to decide where to begin error hunting.

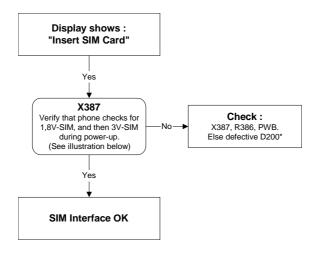


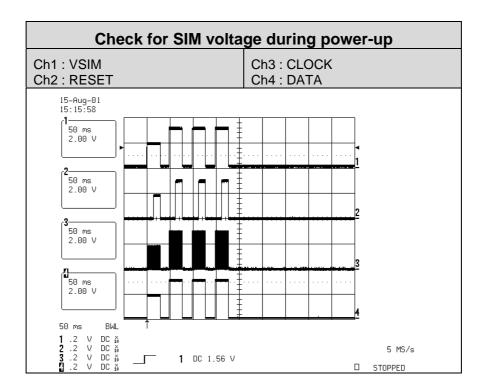

#### 9. Troubleshooting

#### Phone does not register onto the network, or the phone cannot make a call

If the phone doesn't register to the network, the fault can be in either BB or RF. Only few signals can be tested, since several signals are buried in one or more of the inner layers of the PWB.

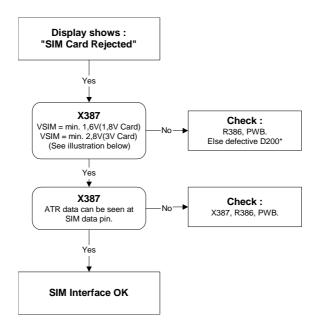
First, check that the SIM LOCK is not causing the error by using a Test-SIM card and connecting the phone to a tester.



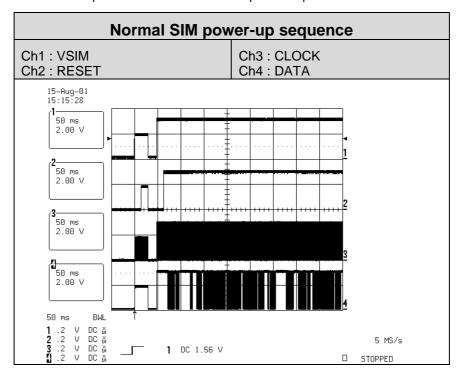


#### SIM-related faults

9. Troubleshooting

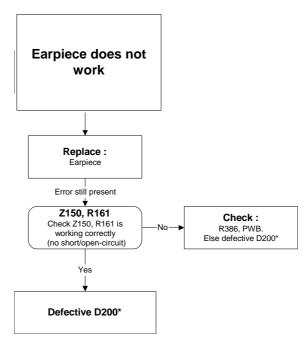
#### Insert SIM card fault

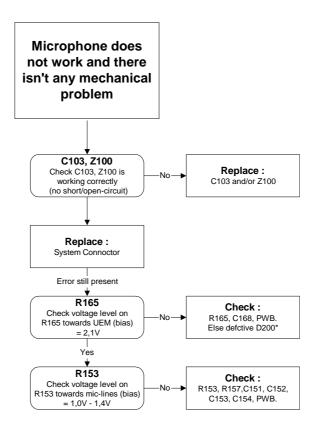

The hardware of the SIM interface from UEM (D200) to the SIM connector (X387) can be tested without a SIM card. When the power is switched on the phone first check for a 1.8V SIM card and then a 3V SIM card. The phone will try this four times, whereafter it will display "Insert SIM card".

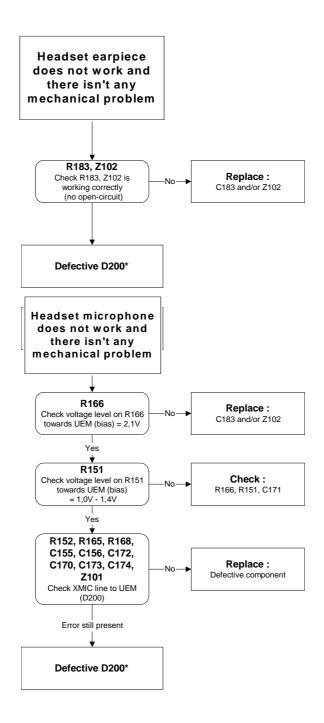





#### SIM-Card rejected

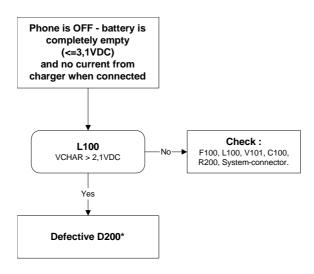

The error "SIM card rejected" means that the ATR message received from SIM card is corrupted, e.g. data signal levels are wrong. The first data is always ATR and it is sent from card to phone.

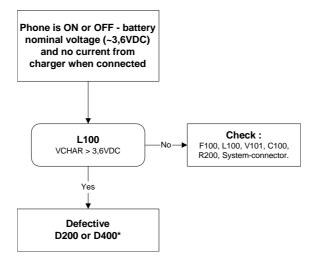


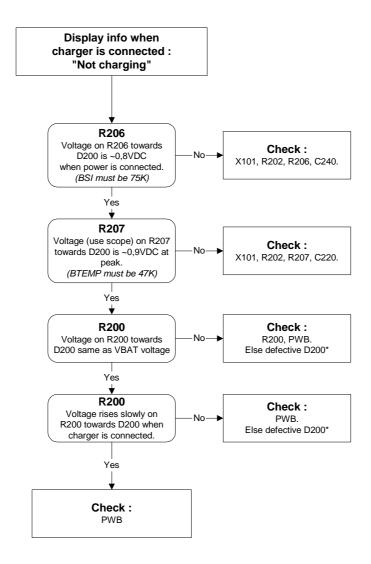


For reference a picture with normal SIM power-up is shown below.



#### Audio-related faults




# **Charging failure**

9. Troubleshooting







# **RF Troubleshooting**

Two types of measurements are used in the following. It will be specified if the measurement type is "RF" or "LF".

RF measurements should be done with a Spectrum Analyzer with a high impedance probe. (Note: Signal levels can vary — depending on measurement setup — therefore; it is recommended that a known good phone is used as a benchmark for the measurement technique used. Measurements stated in this report were done with a HP85024 high impedance probe.)

Note that the test jigs have some losses which must be taken into consideration when calibrating the test system.

NPM-8

LF (Low frequency) and DC measurements should be done with a 10:1 probe and an oscilloscope. The probe used in the following is  $10M\Omega/8pF$  passive probe. If using another probe, then bear in mind that the voltages displayed may be slightly different.

Always make sure the measurement set up is calibrated when measuring RF parameters on the antenna pad. Remember to include the loss in the module test jig when realigning the phone.

**Most RF semiconductors are static discharge sensitive.** ESD protection must be taken during repair (ground straps and ESD soldering irons). Mjoelner and Bifrost are moisture sensitive, so parts must be pre-baked prior to soldering.

Apart from key components described in this document, there are several discrete components (resistors, inductors and capacitors) for which troubleshooting is done by checking if soldering of the component is done properly and checking if the component is missing from PWB. Capacitors can be checked for short-circuiting and resistors for value by means of an ohmmeter, but be aware in-circuit measurements should be evaluated carefully.

In the following, both the name GSM and GSM850 will be used for the lower band and both PCS and GSM1900 will be used for the upper band.

#### General Description of the RF Circuits

In the following general descriptions, different colors are used in the block diagram. The GSM850 signal route is shown in red, the GSM1900 route in green and the common signal lines are shown in blue. Control, supply voltage and unused lines are shown in black.

#### **Receiver Signal Path**

The signal from the antenna pad is routed to the Antenna switch (Z700). If no control voltage is present at VANT2 and VANT1, the switch works as a diplexer for the RX signal: the GSM850 signal passes through the switch to GSM RX and the GSM1900 signal passes through the switch to PCS RX.

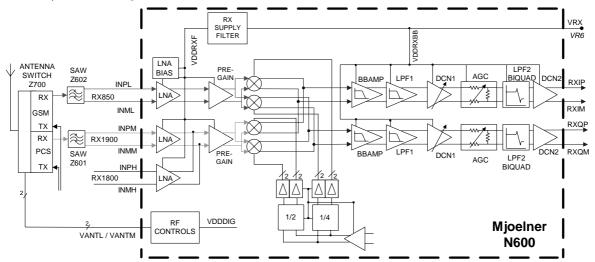



Figure 1: Receiver signal path

From the Antenna switch, the GSM850 signal is routed to the SAW filter (Z602). The purpose of the SAW filter is to provide out-of-band blocking immunity and to provide the LNA in Mjoelner (N600) with a balanced signal. The front end of Mjoelner is divided into an LNA and Pre-Gain amplifier before the mixers.

The output from the mixer is fed to the Baseband part of Mjoelner, where the signals amplified in the BBAMP and low pass filtered in LPF1 before the DC compensation circuits in DCN1. The DCN1 output is followed by a controlled attenuator and a second lowpass filter LPF2. The output from LPF2 is DC centered in DCN2 before being fed to the BB for demodulation.

The GSM1900 signal chain is similar to GSM850, the SAW filter numbered Z601.

#### **Transmitter Signal Path**

The I/Q signal from the BB is routed to the modulators for both 850 and 1900 MHz. The output of the modulators is either terminated in a SAW filter (Z603) for GSM850 or a balun (T600) for GSM1900. Both signals are amplified in buffers, which are operated in a soft compression region to suppress some of the AM contents of the signal and to maintain a certain signal level at the PA inputs. The amplitude limited signal is then amplified in the PA (N700). The detector diode (V700), some discrete components, and the Mjoelner IC (N600) make up the transmitter gain control circuitry. In order to establish the right TX output power level, a sample of the signal is taken in a directional coupler (L709 for GSM850 and L704 for GSM1900) and used in the gain control loop. The TX signal from the couplers is fed to the Antenna switch, which is used to select which signal to route to the antenna.

NPM-8

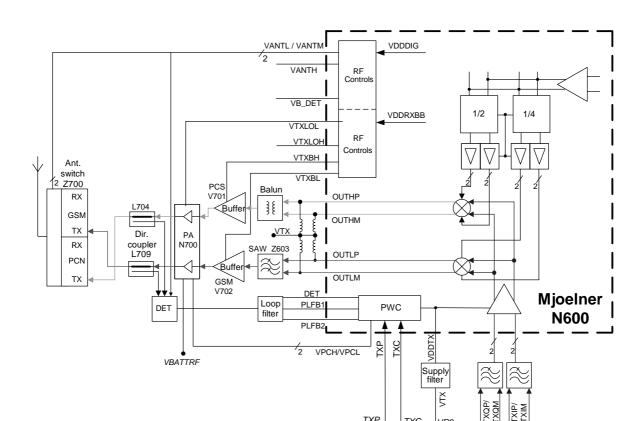



Figure 2: Transmitter signal path

#### PLL

The PLL supplies Local Oscillator (LO) signals for the RX and TX mixers. In order to be able to generate LO frequencies for the required GSM and PCS channels, a regular Synthesizer circuit is used. All PLL blocks except for the VCO, reference X-tal, and loop filter are located in the Mjoelner IC.

The reference frequency is generated by a 26MHz Voltage Controlled X-tal Oscillator (VCXO), which is located in Mjoelner. Only the X-tal is external. 26MHz is supplied to BB where a divide-by-2 circuit (located in the UPP IC) generates the BB clock at 13MHz. The reference frequency is supplied to the reference divider (RDIV) where the frequency is divided by 65. The output of RDIV (400kHz) is used as reference clock for the Phase Detector  $(\varphi)$ .

The PLL is a feedback control system controlling the phase and frequency of the LO signal. Building blocks for the PLL are: Phase detector, Charge Pump, Voltage Controlled Oscillator (VCO), N-divider, and loop filter. As mentioned earlier, only the VCO, reference X-tal, and loop filter are external to the Mjoelner IC.

The VCO (N601) is the component that actually generates the LO frequency. Based on the control voltage input, the VCO generates a differential RF output. This signal is fed to the Prescaler and N-divider in Mjoelner; these two blocks will together divide the frequency by a ratio based on the selected channel. The divider output is supplied to the phase

detector, which compares the frequency and phase to the 400kHz reference clock. Based on this comparison, the phase detector controls the charge pump to either charge or discharge the capacitors in the loop filter. By charging/discharging the loop filter, the control voltage to the VCO changes and the LO frequency will change. Therefore the PLL will make the LO frequency stay locked to the 26MHz VCXO frequency.

The loop filter consists of the following components: C639-C641 and R618-R619.

The PLL is operating at twice the channel center frequency when transmitting or receiving in the PCS band. For the GSM band, the PLL is operating at four times the channel frequency. Therefore, divide-by-2 and divide-by-4 circuits are inserted between the PLL output and LO inputs to the PCS and GSM mixers.

The frequency plan is shown in the following table:

| Frequ | ency Band | Channel # | System Frequency Band<br>(MHz) | PLL Frequency Band<br>(MHz) |
|-------|-----------|-----------|--------------------------------|-----------------------------|
| GSM   | RX        | 128-251   | 869.2 - 893.8                  | 3476.8 - 3575.2             |
|       | TX        |           | 824.2 - 848.8                  | 3296.8 - 3395.2             |
| PCS   | RX        | 512 - 810 | 1930.2 - 1989.8                | 3860.4 - 3979.6             |
|       | TX        |           | 1850.2 - 1909.8                | 3700.4 - 3819.6             |

According to the table above, the PLL must be able to cover the frequency range 3296.8 MHz to 3979.6 MHz.

The VCO used in HDbc2 actually consists of four different VCOs, each covering different parts of the PLL frequency range. Added together, the four VCOs cover the full range. In order for the SW to know which VCO to use for a certain channel, a set of three threshold frequencies have to be determined during the alignment procedure.

The coverage area for each VCO is determined by sweeping the PLL frequency range and reading back values from an Out-Of-Range indicator in the VCO for each frequency setting. The coverage areas will overlap each other to ensure coverage of the full frequency range.

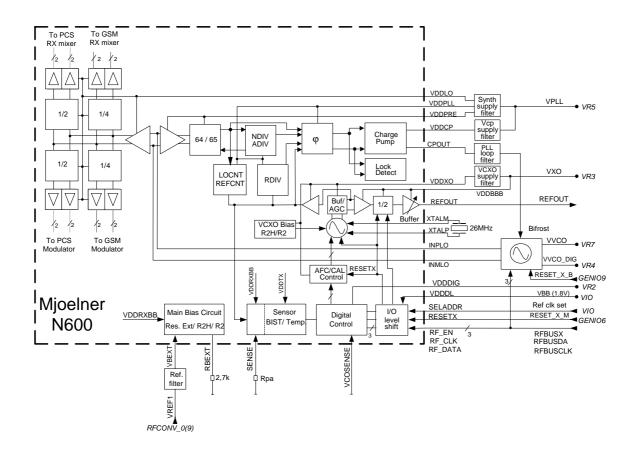
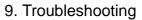




Figure 3: Synthesizer



# **Key RF Component Placement**

| N600 | Mjoelner RF IC        |  |
|------|-----------------------|--|
| Z601 | PCS RX SAW            |  |
| Z602 | GSM RX SAW            |  |
| Z603 | GSM TX SAW            |  |
| B600 | 26 MHz crystal        |  |
| N601 | VCO (3.6 GHz UHF VCO) |  |
| N700 | Power Amplifier (PA)  |  |
| Z700 | Antenna switch        |  |

NPM-8

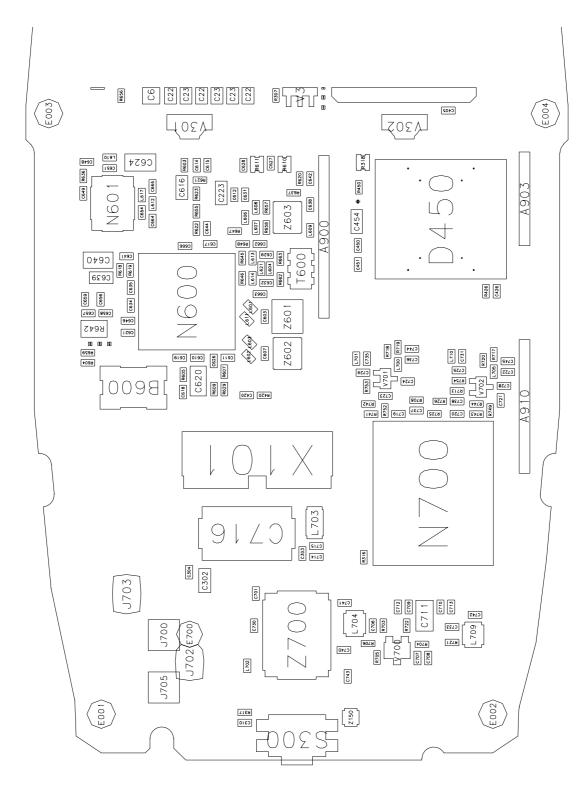



Figure 4: Key component locations

#### **Power Supply Configuration**

All power supplies for the RF Unit are generated in the UEM IC (D200). All power outputs from this IC have a decoupling capacitor at which the supply voltage can be checked.

The power supply configuration used in the HDbc2 phone is shown in the following block diagram:

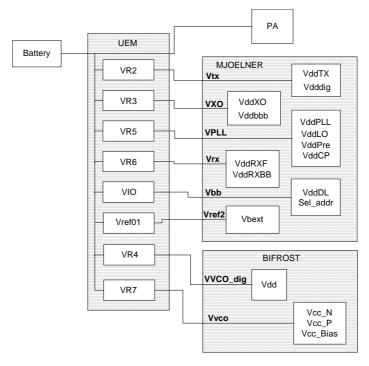



Figure 5: Power supply configuration

The names in **bold** are signal names which are used on the RF schematic pages. Names in the boxes within the Mjoelner and Bifrost (VCO) refer to pin names on the respective ICs (N600, N601).

| Supply name<br>RF | Supply name<br>UEM | Min   | Тур  | Max   | Unit |
|-------------------|--------------------|-------|------|-------|------|
| VTX               | VR2                | 2.64  | 2.78 | 2.86  | ٧    |
| VXO               | VR3                | 2.64  | 2.78 | 2.86  | ٧    |
| VVCO_DIG          | VR4                | 2.64  | 2.78 | 2.86  | ٧    |
| VPLL              | VR5                | 2.64  | 2.78 | 2.86  | ٧    |
| VRX               | VR6                | 2.64  | 2.78 | 2.86  | V    |
| VVCO              | VR7                | 2.64  | 2.78 | 2.86  | V    |
| VBB               | VIO                | 1.72  | 1.8  | 1.88  | V    |
| VREF2             | VrefRF01           | 1.334 | 1.35 | 1.366 | V    |
| VBATT             | BATTERY            | 3.1   | 3.6  | 5.2   | V    |

The following diagram illustrates measuring points at the UEM (D200).

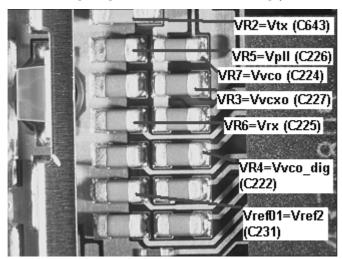



Figure 6: Supply points at the UEM (D200)

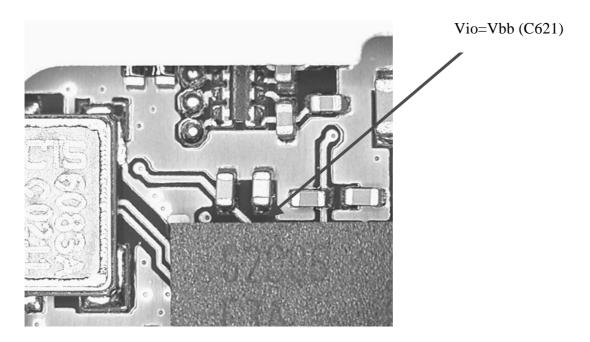



Figure 7: Supply point at the Mjoelner (N600)

#### Receiver

#### General Instructions for GSM850 RX Troubleshooting

Connect the phone to a PC with the module test jig.

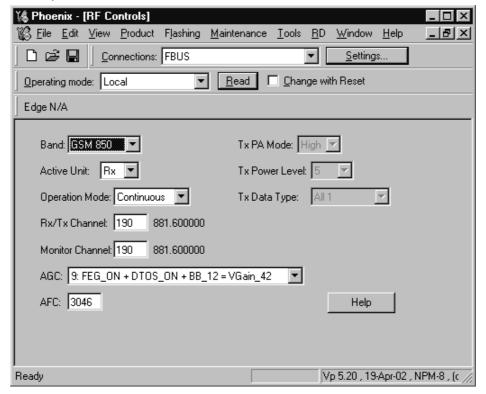
Start Phoenix and establish connection to the phone.

Select File

Scan for Product

Ctrl-R

#### Select Maintenance


**Testing** 

#### **RF Controls**

#### Select:

| Band   | Active Unit | Operation Mode | RX-TX Channel | AGC |
|--------|-------------|----------------|---------------|-----|
| GSM850 | RX          | Continuous     | 190           | 9   |

The setup should now look like this:



9. Troubleshooting

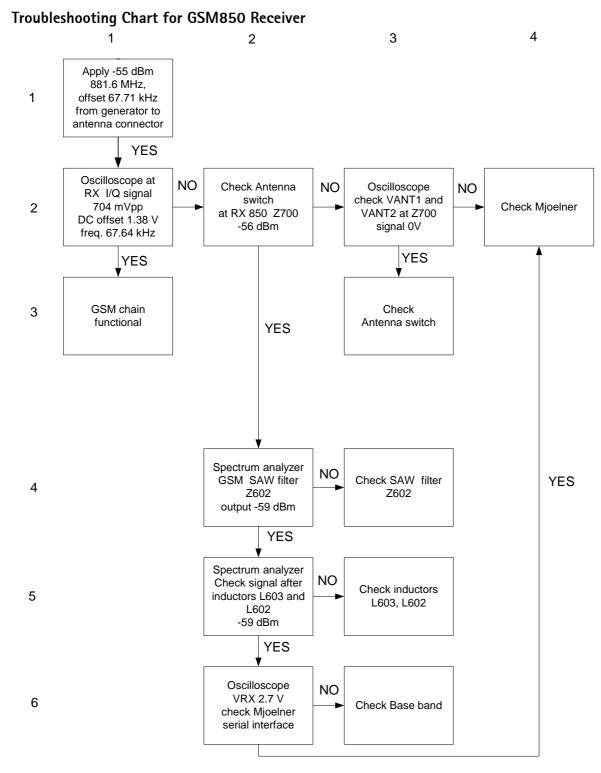



Figure 8: GSM850 receiver troubleshooting chart

By measuring with an oscilloscope at RXIP or RXQP on a working GSM850 receiver, the following picture should be seen.

Signal amplitude peak-peak 704 mV

DC offset 1.38 V

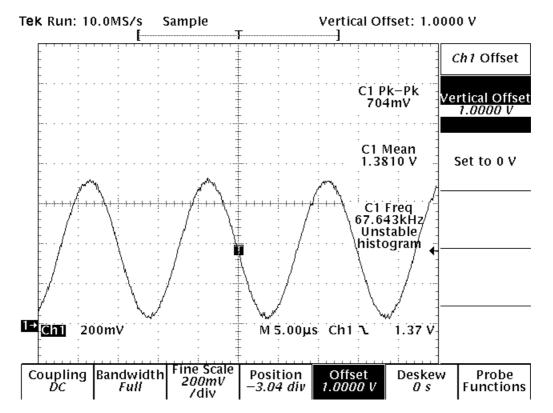



Figure 9: RX850 I/Q signal waveform

#### General Instructions for GSM1900 RX Troubleshooting

Connect the phone to a PC with the module test jig.

Start Phoenix and establish connection to the phone.

Select File

Scan for Product

Ctrl-R

Select Maintenance

Testing


**RF Controls** 

Select:

| Band    | Active Unit | Operation Mode | RX/TX Channel | AGC |
|---------|-------------|----------------|---------------|-----|
| GSM1900 | RX          | Continuous     | 661           | 9   |

NPM-8

The setup should now look like this:



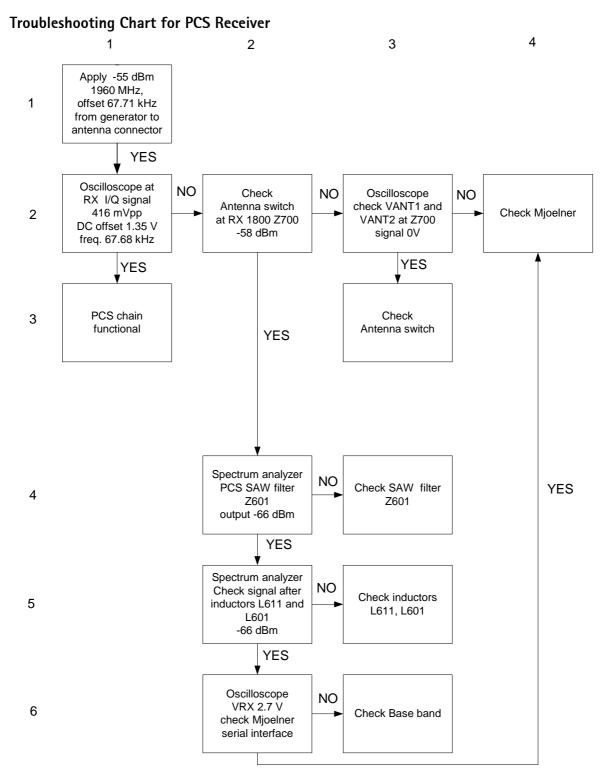



Figure 10: GSM1900 receiver troubleshooting chart

By measuring with an oscilloscope at RXIP or RXQP on a working GSM1900 receiver, the following picture should be seen.

Signal amplitude peak-peak 416 mV

DC offset 1.35 V

9. Troubleshooting

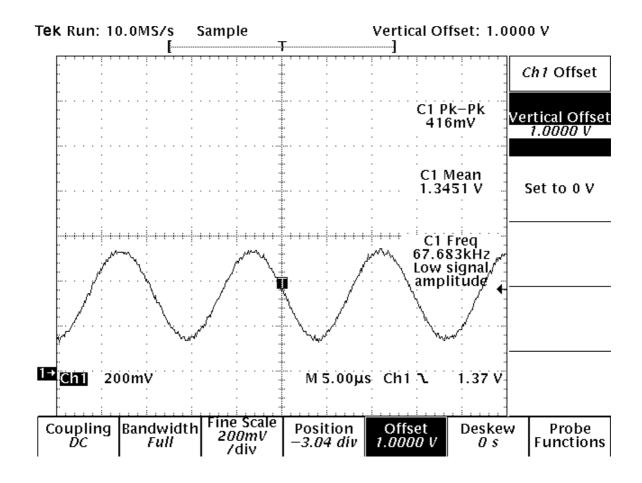



Figure 11: RX1900 I-Q signal waveform

#### Measurement Points in the Receiver

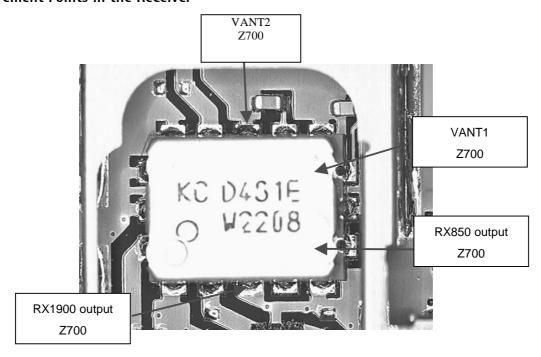



Figure 12: RX measurements point at the Antenna switch - Z700

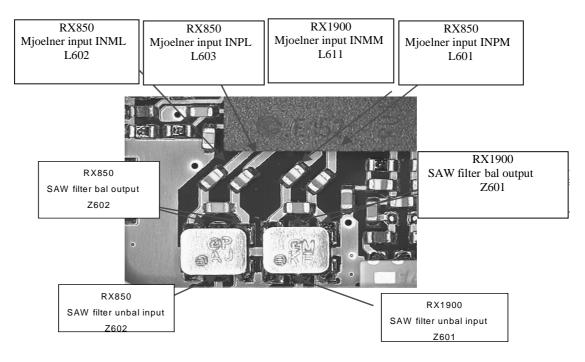



Figure 13: Measurement points at the RX filters — Z601-Z602

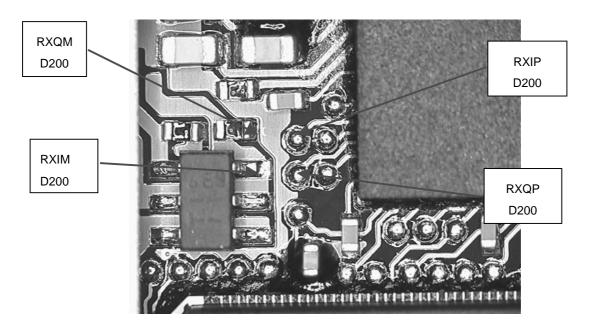



Figure 14: RX I/Q Signals Base Band shielding can

# Transmitter

#### Measurement Points for the Transmitter

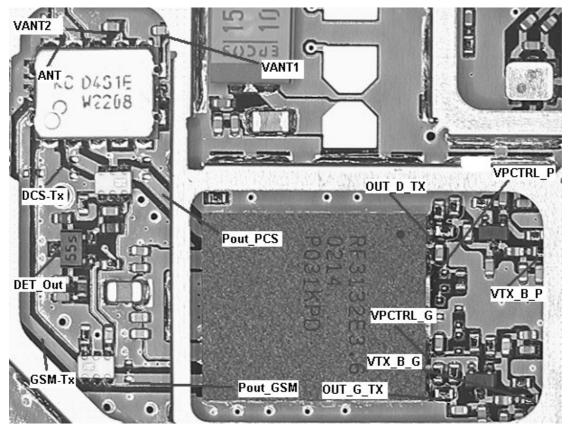



Figure 15: Measurement points in the PA N700 shielding can

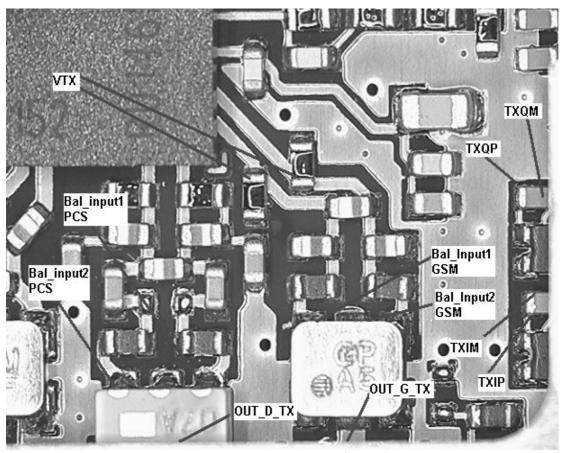



Figure 16: TX measurement points in the PA ( N700 ) shielding can

# General Instructions for GSM TX Troubleshooting

Apply a RF cable to the test jig's RF connector to allow the transmitted signal to act as normal. The RF cable should be connected to measurement equipment with at least a 10 dB attenuator, or the test equipment may be damaged.

Start Phoenix-Service-Software and:

Establish a connection to the phone e.g. FBUS or MBUS.

Select File

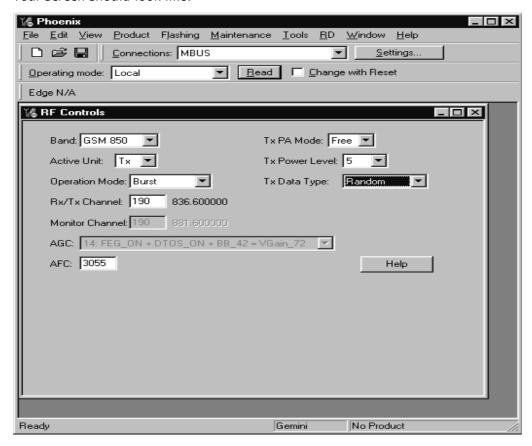
**Choose Product** 

Enigma

Select: Maintenance

Testing

**RF Controls** 


Band: GSM850

Active Unit: TX

Tx Power Level: 5

Tx Data Type: Random

Your screen should look like:



Measure the output power of the phone; it should be around 32.0 dBm. Remember the loss along the end launch connector in the test jig; which is around 0.3 dB.

### Troubleshooting Chart for GSM850 Transmitter

Troubleshooting the Output Power

Use a high impedance probe for the spectrum analyzer measurements in the following chart. Since the signal is bursted, set the trace to maxhold.

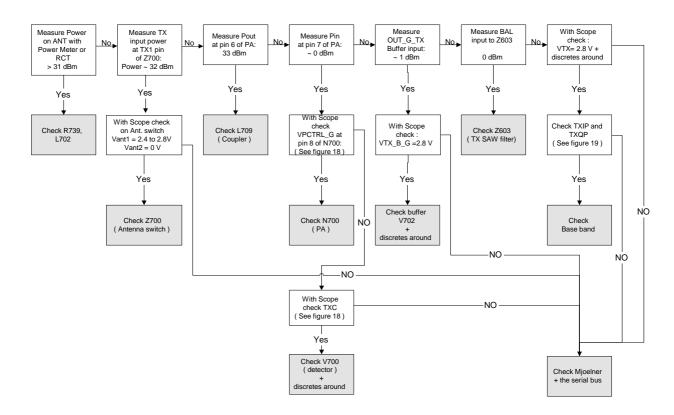



Figure 17: GSM850 transmitter troubleshooting chart

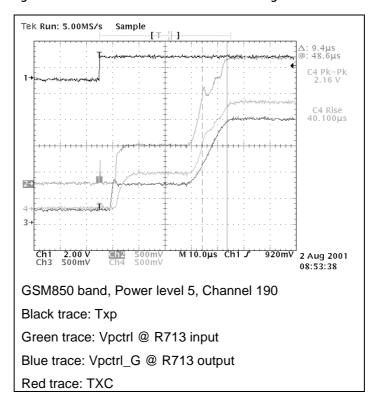



Figure 18: TXP, VPCTRL\_G & TXC



### Troubleshooting the Modulation

The following plots show different situations of TX IQ measurements. Depending on the time, the modulation may cause the signal to look differently.

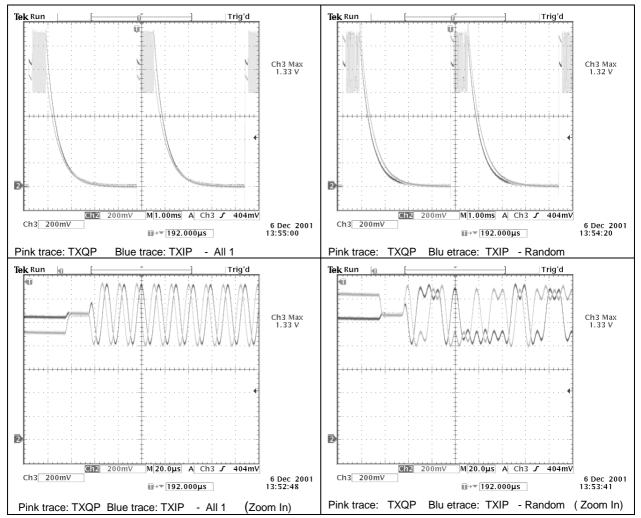



Figure 19: TX I/Q waveforms

I/Q signals look almost the same regardless if modulation is by "1" or by "0". There is no significant difference between TXIP and TXIM. The same is valid for TXQP and TXQM.

### General instructions for PCS TX troubleshooting

Apply an RF cable to the RF connector to allow the transmitted signal act as normal. The RF cable should be connected to measurement equipment or to at least a 10 dB attenuatorö otherwise, the PA may be damaged.

Start Phoenix-Service-Software and:

Establish a connection to the phone e.g. FBUS.

Select File

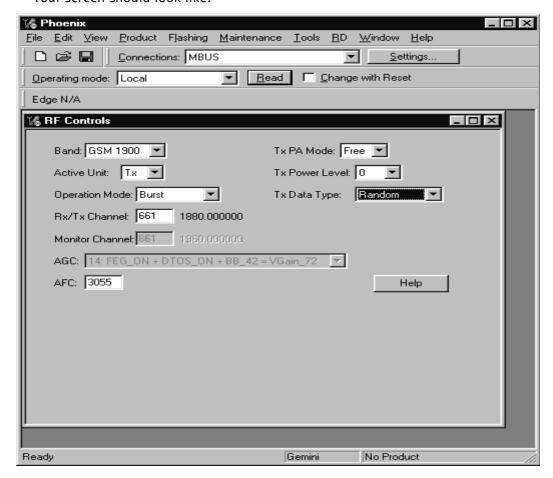
**Choose Product** 

Enigma

Select: Maintenance

Testing

**RF Controls** 


Band: GSM1900

Active Unit: TX

Tx Power Level: 0

Tx Data Type: Random

Your screen should look like:



Measure the output power of the phone; it should be around 29.5 dBm. Remember the loss in the test jig; around 0.7 dB.

# **CCS Technical Documentation**

### Troubleshooting chart for PCS transmitter

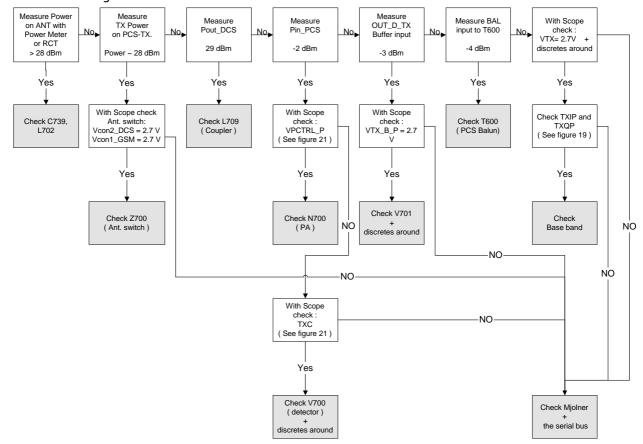



Figure 20: GSM1900 transmitter troubleshooting chart

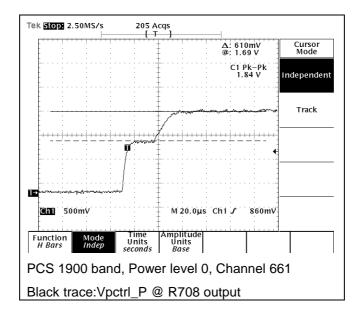



Figure 21: VPCTRL\_P

<sup>\*\*</sup> TXIQ signals look the same in PCS and GSM.

# Synthesizer

There is only one PLL synthesizer generating Local Oscillator frequencies for both RX and TX in both bands (PCS and GSM). The VCO frequency is divided by two for PCS operation or by four for GSM operation inside the Mjoelner IC.

# General Instructions for Synthesizer Troubleshooting

Start the Phoenix-Service-Software and

Select: Product NPM-8NX

Select: Maintenance

Testing

**RF Controls** 

Band GSM1900

Active Unit RX

Operation Mode Continuous

RX/TX Channel 661

It is not possible to measure the output of the VCO (N601) directly as this component is placed underneath a shielding can without detachable lid. However with spectrum analyzer and high impedance probe it is possible to get an indication if the VCO outputs the correct frequency. To do this probe R656 – the frequency should be 3920 MHz and the power should be around –50 dBm.

#### 26 MHz Reference Oscillator (VCXO)

The 26 MHz oscillator is located in the Mjoelner IC (N600). The coarse frequency for this oscillator is set by an external crystal (B600). The reference oscillator is used as a reference frequency for the PLL synthesizer and as the system clock for Base Band. The 26MHz signal is divided by 2 to achieve 13MHz inside the UPP IC (D400). The 26 MHz signal from the VCXO can be measured by probing R425 (must be measured on the UPP side of R425 i.e. the end **not** connected to C425). The level at this point is approx. 700mVpp. Frequency of this oscillator is adjusted by changing the AFC-register inside the Mjoelner IC. This is done via the Mjoelner serial interface.

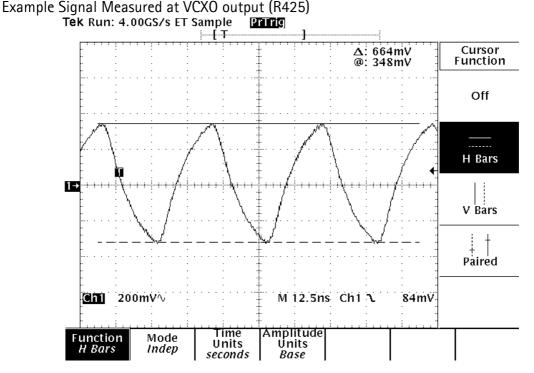



Figure 22: VCXO 26 MHz waveform

**VCO** 

The VCO is generating frequencies in the range of 3296.8 MHz – 3979.6 MHz when the PLL is running. The output frequency from the VCO is led to the Local oscillator input of the Mjoelner IC (N600), where the frequency is divided by 2 or 4 so that they can generate all channels in GSM and PCS respectively. Frequency of the VCO is controlled by a DC-voltage (Vctrl) coming from the loop filter. The loop filter consists of the components R618, R619 and C639-C641. Range of the Vctrl when the PLL is running (locked) is 0.4V - 2.4V. Even if the PLL is not in locked state (Vctrl out of range) there is some freguency at the output of the VCO (N601) which is between 3 and 4 GHz. This is of course only true if the VCO is working and if the VCO power supply is present (2.7V).

The VCO actually consists of four different internal VCO's. Each of these internal VCO's cover separate parts of the total frequency range. In order for the VCO to know which internal VCO to use for a certain frequency a calibration procedure must be used before the VCO is used. The calibration procedure determines three threshold values, which should be stored in the phones permanent memory.

To run the VCO calibration: Start the Phoenix-Service-Software and

Select: Product NPM-8NX

Select: Maintenance

Tuning

VCO Calibration

### Calibrate

Update PMM (Only if the old values can be deleted)

The result of the calibration will be:

Three Threshold values

Min. and max. frequencies for VCO1, ..., VCO4

The following relation must apply to the three thresholds:

Threshold 1 < Threshold 2 < Threshold 3 and for the VCO edge-frequencies the following must be satisfied:

VC01,min < 3296 MHz

VCO1,max - VCO2,min > 50MHz

VCO2,max - VCO3,min > 50MHz

VCO4,max - VCO4,min > 50MHz

VCO4,min > 3980 MHz



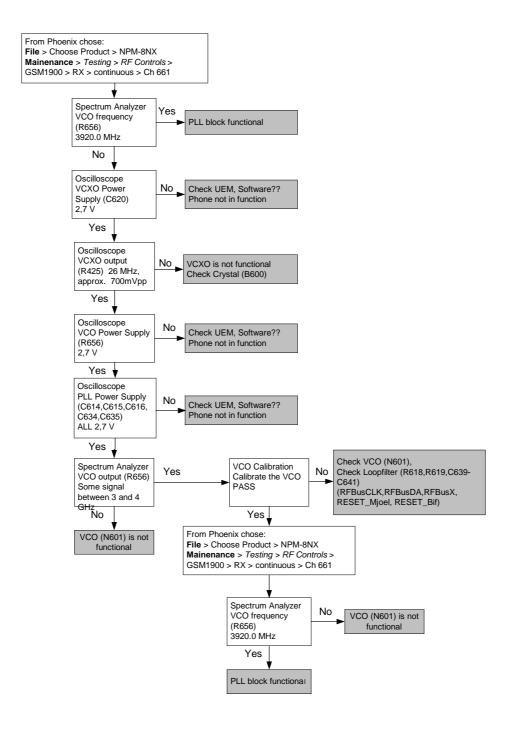



Figure 23: PLL troubleshooting chart

#### Troubleshooting Chart for PLL Synthesizer

If the phone stops working a short time after the power is turned ON, a possible reason for this might be that the 26MHz system clock signal is not getting to the UPP clockinput in Base Band. In this case check the following:

Turn on the phone and check

VCXO Power supply (C620) = 2.7V

9. Troubleshooting

VCXO output (R425 – end **not** connected to C425) is 26MHz and approx.

700mVpp

If this is not the case, check the reference crystal (B600), Mjoelner (N600), R425, R426, C425, and C426.

### Measurement Points for the PLL

Measurement Points at the VCXO

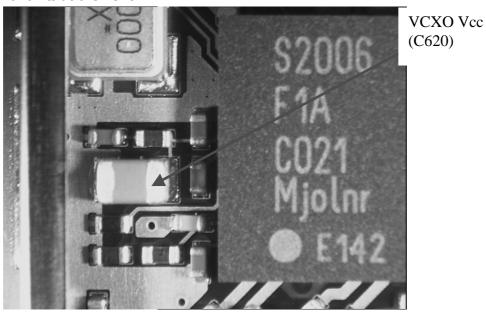



Figure 24: Measurement point for VCXO supply

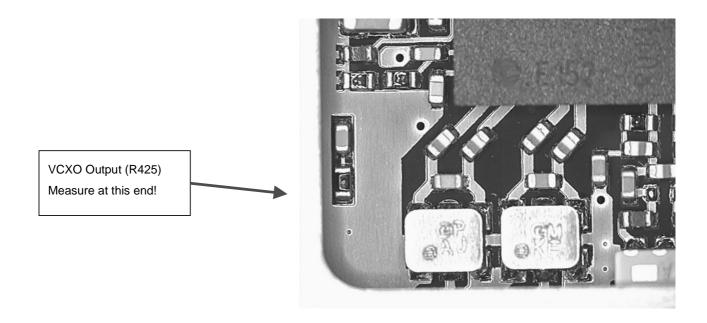
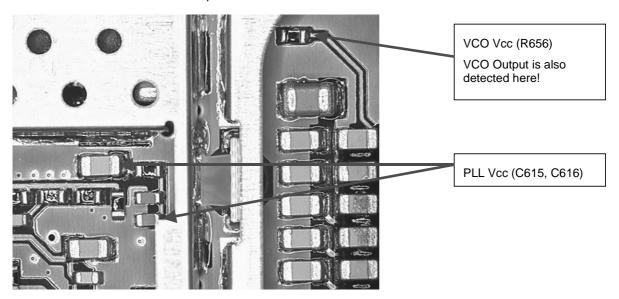




Figure 25: Measurement point for VCXO output

NPM-8

### Measurement Points at the PLL/VCO



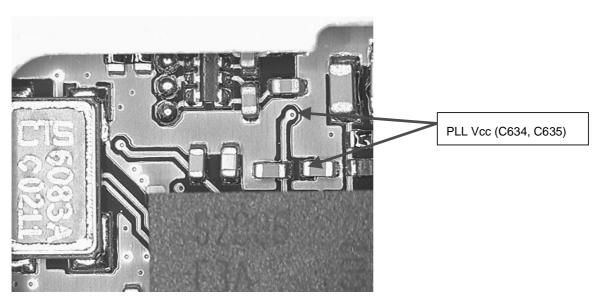



Figure 26: Measurement point for PLL

# Frequency Lists

### GSM850

| Ch  | TX    | RX    | VCO TX | VCO RX | Ch  | TX    | RX    | VCO TX | VCO RX | Ī | Ch  | TX    | RX    | <b>VCO TX</b> | VCO RX |
|-----|-------|-------|--------|--------|-----|-------|-------|--------|--------|---|-----|-------|-------|---------------|--------|
| 128 | 824.2 | 869.2 | 3296.8 | 3476.8 | 170 | 832.6 | 877.6 | 3330.4 | 3510.4 |   | 210 | 840.6 | 885.6 | 3362.4        | 3542.4 |
| 129 | 824.4 | 869.4 | 3297.6 | 3477.6 | 171 | 832.8 | 877.8 | 3331.2 | 3511.2 |   | 211 | 840.8 | 885.8 | 3363.2        | 3543.2 |
| 130 | 824.6 | 869.6 | 3298.4 | 3478.4 | 172 | 833   | 878   | 3332   | 3512   |   | 212 | 841   | 886   | 3364          | 3544   |
| 131 | 824.8 | 869.8 | 3299.2 | 3479.2 | 173 | 833.2 | 878.2 | 3332.8 | 3512.8 |   | 213 | 841.2 | 886.2 | 3364.8        | 3544.8 |
| 132 | 825   | 870   | 3300   | 3480   | 174 | 833.4 | 878.4 | 3333.6 | 3513.6 |   | 214 | 841.4 | 886.4 | 3365.6        | 3545.6 |
| 133 | 825.2 | 870.2 | 3300.8 | 3480.8 | 175 | 833.6 | 878.6 | 3334.4 | 3514.4 |   | 215 | 841.6 | 886.6 | 3366.4        | 3546.4 |
| 134 | 825.4 | 870.4 | 3301.6 | 3481.6 | 176 | 833.8 | 878.8 | 3335.2 | 3515.2 |   | 216 | 841.8 | 886.8 | 3367.2        | 3547.2 |
| 135 | 825.6 | 870.6 | 3302.4 | 3482.4 | 177 | 834   | 879   | 3336   | 3516   |   | 217 | 842   | 887   | 3368          | 3548   |
| 136 | 825.8 | 870.8 | 3303.2 | 3483.2 | 178 | 834.2 | 879.2 | 3336.8 | 3516.8 | Ī | 218 | 842.2 | 887.2 | 3368.8        | 3548.8 |
| 137 | 826   | 871   | 3304   | 3484   | 179 | 834.4 | 879.4 | 3337.6 | 3517.6 | Ī | 219 | 842.4 | 887.4 | 3369.6        | 3549.6 |
| 138 | 826.2 | 871.2 | 3304.8 | 3484.8 | 180 | 834.6 | 879.6 | 3338.4 | 3518.4 |   | 220 | 842.6 | 887.6 | 3370.4        | 3550.4 |
| 139 | 826.4 | 871.4 | 3305.6 | 3485.6 | 181 | 834.8 | 879.8 | 3339.2 | 3519.2 |   | 221 | 842.8 | 887.8 | 3371.2        | 3551.2 |
| 140 | 826.6 | 871.6 | 3306.4 | 3486.4 | 182 | 835   | 880   | 3340   | 3520   |   | 222 | 843   | 888   | 3372          | 3552   |
| 141 | 826.8 | 871.8 | 3307.2 | 3487.2 | 183 | 835.2 | 880.2 | 3340.8 | 3520.8 |   | 223 | 843.2 | 888.2 | 3372.8        | 3552.8 |
| 142 | 827   | 872   | 3308   | 3488   | 184 | 835.4 | 880.4 | 3341.6 | 3521.6 |   | 224 | 843.4 | 888.4 | 3373.6        | 3553.6 |
| 143 | 827.2 | 872.2 | 3308.8 | 3488.8 | 185 | 835.6 | 880.6 | 3342.4 | 3522.4 |   | 225 | 843.6 | 888.6 | 3374.4        | 3554.4 |
| 144 | 827.4 | 872.4 | 3309.6 | 3489.6 | 186 | 835.8 | 880.8 | 3343.2 | 3523.2 |   | 226 | 843.8 | 888.8 | 3375.2        | 3555.2 |
| 145 | 827.6 | 872.6 | 3310.4 | 3490.4 | 187 | 836   | 881   | 3344   | 3524   |   | 227 | 844   | 889   | 3376          | 3556   |
| 146 | 827.8 | 872.8 | 3311.2 | 3491.2 | 188 | 836.2 | 881.2 | 3344.8 | 3524.8 |   | 228 | 844.2 | 889.2 | 3376.8        | 3556.8 |
| 147 | 828   | 873   | 3312   | 3492   | 189 | 836.4 | 881.4 | 3345.6 | 3525.6 |   | 229 | 844.4 | 889.4 | 3377.6        | 3557.6 |
| 148 | 828.2 | 873.2 | 3312.8 | 3492.8 | 190 | 836.6 | 881.6 | 3346.4 | 3526.4 |   | 230 | 844.6 | 889.6 | 3378.4        | 3558.4 |
| 149 | 828.4 | 873.4 | 3313.6 | 3493.6 | 191 | 836.8 | 881.8 | 3347.2 | 3527.2 |   | 231 | 844.8 | 889.8 | 3379.2        | 3559.2 |
| 150 | 828.6 | 873.6 | 3314.4 | 3494.4 | 192 | 837   | 882   | 3348   | 3528   |   | 232 | 845   | 890   | 3380          | 3560   |
| 151 | 828.8 | 873.8 | 3315.2 | 3495.2 | 193 | 837.2 | 882.2 | 3348.8 | 3528.8 |   | 233 | 845.2 | 890.2 | 3380.8        | 3560.8 |
| 152 | 829   | 874   | 3316   | 3496   | 194 | 837.4 | 882.4 | 3349.6 | 3529.6 |   | 234 | 845.4 | 890.4 | 3381.6        | 3561.6 |
| 153 | 829.2 | 874.2 | 3316.8 | 3496.8 | 195 | 837.6 | 882.6 | 3350.4 | 3530.4 |   | 235 | 845.6 | 890.6 | 3382.4        | 3562.4 |
| 154 | 829.4 | 874.4 | 3317.6 | 3497.6 | 196 | 837.8 | 882.8 | 3351.2 | 3531.2 |   | 236 | 845.8 | 890.8 | 3383.2        | 3563.2 |
| 155 | 829.6 | 874.6 | 3318.4 | 3498.4 | 197 | 838   | 883   | 3352   | 3532   |   | 237 | 846   | 891   | 3384          | 3564   |
| 156 | 829.8 | 874.8 | 3319.2 | 3499.2 | 198 | 838.2 | 883.2 | 3352.8 | 3532.8 |   | 238 | 846.2 | 891.2 | 3384.8        | 3564.8 |
| 157 | 830   | 875   | 3320   | 3500   | 199 | 838.4 | 883.4 | 3353.6 | 3533.6 |   | 239 | 846.4 | 891.4 | 3385.6        | 3565.6 |
| 158 | 830.2 | 875.2 | 3320.8 | 3500.8 | 200 | 838.6 | 883.6 | 3354.4 | 3534.4 |   | 240 | 846.6 | 891.6 | 3386.4        | 3566.4 |
| 159 | 830.4 | 875.4 | 3321.6 | 3501.6 | 201 | 838.8 | 883.8 | 3355.2 | 3535.2 |   | 241 | 846.8 | 891.8 | 3387.2        | 3567.2 |
| 160 | 830.6 | 875.6 | 3322.4 | 3502.4 | 202 | 839   | 884   | 3356   | 3536   |   | 242 | 847   | 892   | 3388          | 3568   |
| 161 | 830.8 | 875.8 | 3323.2 | 3503.2 | 203 | 839.2 | 884.2 | 3356.8 | 3536.8 |   | 243 | 847.2 | 892.2 | 3388.8        | 3568.8 |
| 162 | 831   | 876   | 3324   | 3504   | 204 | 839.4 | 884.4 | 3357.6 | 3537.6 |   | 244 | 847.4 | 892.4 | 3389.6        | 3569.6 |
| 163 | 831.2 | 876.2 | 3324.8 | 3504.8 | 205 | 839.6 | 884.6 | 3358.4 | 3538.4 |   | 245 | 847.6 | 892.6 | 3390.4        | 3570.4 |
| 164 | 831.4 | 876.4 | 3325.6 | 3505.6 | 206 | 839.8 | 884.8 | 3359.2 | 3539.2 |   | 246 | 847.8 | 892.8 | 3391.2        | 3571.2 |
| 165 | 831.6 | 876.6 | 3326.4 | 3506.4 | 207 | 840   | 885   | 3360   | 3540   |   | 247 | 848   | 893   | 3392          | 3572   |
| 166 | 831.8 | 876.8 | 3327.2 | 3507.2 | 208 | 840.2 | 885.2 | 3360.8 | 3540.8 |   | 248 | 848.2 | 893.2 | 3392.8        | 3572.8 |
| 167 | 832   | 877   | 3328   | 3508   | 209 | 840.4 | 885.4 | 3361.6 | 3541.6 |   | 249 | 848.4 | 893.4 | 3393.6        | 3573.6 |
| 168 | 832.2 | 877.2 | 3328.8 | 3508.8 |     |       |       |        |        |   | 250 | 848.6 | 893.6 | 3394.4        | 3574.4 |
| 169 | 832.4 | 877.4 | 3329.6 | 3509.6 |     |       |       |        |        |   | 251 | 848.8 | 893.8 | 3395.2        | 3575.2 |

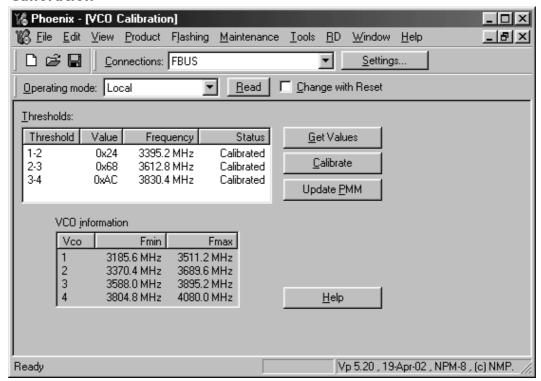
# PCS1900

|               | TX     | RX     | VCO TX | VCO RX | Ch  | TX     | RX     | <b>VCO TX</b> | VCO RX | Ch  | TX     | RX     | <b>VCO TX</b> | <b>VCO RX</b> |
|---------------|--------|--------|--------|--------|-----|--------|--------|---------------|--------|-----|--------|--------|---------------|---------------|
| <b>Ch</b> 512 | 1850.2 | 1930.2 | 3700.4 | 3860.4 | 612 | 1870.2 | 1950.2 | 3740.4        | 3900.4 | 712 | 1890.2 | 1970.2 | 3780.4        | 3940.4        |
|               | 1850.4 | 1930.4 | 3700.8 | 3860.8 | 613 | 1870.4 | 1950.4 | 3740.8        | 3900.8 | 713 | 1890.4 | 1970.4 | 3780.8        | 3940.8        |
|               | 1850.6 | 1930.6 | 3701.2 | 3861.2 | 614 | 1870.4 | 1950.4 | 3741.2        | 3901.2 | 714 | 1890.6 | 1970.4 | 3781.2        | 3941.2        |
|               | 1850.8 | 1930.8 | 3701.6 | 3861.6 | 615 | 1870.8 | 1950.8 | 3741.6        | 3901.6 | 715 | 1890.8 | 1970.8 | 3781.6        | 3941.6        |
| 516           | 1851   | 1930.6 | 3701.0 | 3862   | 616 | 1871   | 1950.6 | 3741.0        | 3902   | 716 | 1891   | 1970.8 | 3782          | 3942          |
| 517           | 1851.2 | 1931.2 | 3702.4 | 3862.4 | 617 | 1871.2 | 1951.2 | 3742.4        | 3902.4 | 717 | 1891.2 | 1971.2 | 3782.4        | 3942.4        |
|               | 1851.4 | 1931.4 | 3702.4 | 3862.8 | 618 | 1871.4 | 1951.4 | 3742.4        | 3902.4 | 718 | 1891.4 | 1971.4 | 3782.8        | 3942.4        |
|               | 1851.6 | 1931.6 | 3702.0 | 3863.2 | 619 | 1871.6 | 1951.4 | 3743.2        | 3903.2 | 719 | 1891.6 | 1971.6 | 3783.2        | 3943.2        |
| 520           | 1851.8 | 1931.8 | 3703.2 | 3863.6 | 620 | 1871.8 | 1951.8 | 3743.6        | 3903.2 | 720 | 1891.8 | 1971.8 | 3783.6        | 3943.6        |
| 521           | 1852   | 1931.6 | 3703.0 | 3864   | 621 | 1872   | 1951.6 | 3744          | 3903.0 | 721 | 1892   | 1971.6 | 3784          | 3944          |
| - 8           | 1852.2 | 1932.2 | 3704.4 | 3864.4 | 622 | 1872.2 | 1952.2 | 3744.4        | 3904.4 | 722 | 1892.2 | 1972.2 | 3784.4        | 3944.4        |
|               | 1852.4 | 1932.4 | 3704.4 | 3864.8 | 623 | 1872.4 | 1952.4 | 3744.8        | 3904.4 | 723 | 1892.4 | 1972.4 | 3784.8        | 3944.8        |
|               | 1852.6 | 1932.4 | 3704.8 | 3865.2 | 624 | 1872.6 | 1952.4 | 3745.2        |        | 724 | 1892.4 | 1972.4 | 3785.2        | 3945.2        |
|               | 1852.8 | 1932.8 |        | oro    | 625 | 1872.8 | 1952.8 |               | 3905.2 | 725 | 1892.8 |        |               | 3945.2        |
|               |        |        | 3705.6 | 3865.6 |     | L.,    | L      | 3745.6        | 3905.6 |     | 4      | 1972.8 | 3785.6        |               |
| 526           | 1853   | 1933   | 3706   | 3866   | 626 | 1873   | 1953   | 3746          | 3906   | 726 | 1893   | 1973   | 3786          | 3946          |
| 527           | 1853.2 | 1933.2 | 3706.4 | 3866.4 | 627 | 1873.2 | 1953.2 | 3746.4        | 3906.4 | 727 | 1893.2 | 1973.2 | 3786.4        | 3946.4        |
| 528           | 1853.4 | 1933.4 | 3706.8 | 3866.8 | 628 | 1873.4 | 1953.4 | 3746.8        | 3906.8 | 728 | 1893.4 | 1973.4 | 3786.8        | 3946.8        |
| 529           | 1853.6 | 1933.6 | 3707.2 | 3867.2 | 629 | 1873.6 | 1953.6 | 3747.2        | 3907.2 | 729 | 1893.6 | 1973.6 | 3787.2        | 3947.2        |
| 530           | 1853.8 | 1933.8 | 3707.6 | 3867.6 | 630 | 1873.8 | 1953.8 | 3747.6        | 3907.6 | 730 | 1893.8 | 1973.8 | 3787.6        | 3947.6        |
| 531           | 1854   | 1934   | 3708   | 3868   | 631 | 1874   | 1954   | 3748          | 3908   | 731 | 1894   | 1974   | 3788          | 3948          |
|               | 1854.2 | 1934.2 | 3708.4 | 3868.4 | 632 | 1874.2 | 1954.2 | 3748.4        | 3908.4 | 732 | 1894.2 | 1974.2 | 3788.4        | 3948.4        |
| 533           | 1854.4 | 1934.4 | 3708.8 | 3868.8 | 633 | 1874.4 | 1954.4 | 3748.8        | 3908.8 | 733 | 1894.4 | 1974.4 | 3788.8        | 3948.8        |
|               | 1854.6 | 1934.6 | 3709.2 | 3869.2 | 634 | 1874.6 | 1954.6 | 3749.2        | 3909.2 | 734 | 1894.6 | 1974.6 | 3789.2        | 3949.2        |
| 535           | 1854.8 | 1934.8 | 3709.6 | 3869.6 | 635 | 1874.8 | 1954.8 | 3749.6        | 3909.6 | 735 | 1894.8 | 1974.8 | 3789.6        | 3949.6        |
| 536           | 1855   | 1935   | 3710   | 3870   | 636 | 1875   | 1955   | 3750          | 3910   | 736 | 1895   | 1975   | 3790          | 3950          |
| 537           | 1855.2 | 1935.2 | 3710.4 | 3870.4 | 637 | 1875.2 | 1955.2 | 3750.4        | 3910.4 | 737 | 1895.2 | 1975.2 | 3790.4        | 3950.4        |
|               | 1855.4 | 1935.4 | 3710.8 | 3870.8 | 638 | 1875.4 | 1955.4 | 3750.8        | 3910.8 | 738 | 1895.4 | 1975.4 | 3790.8        | 3950.8        |
|               | 1855.6 | 1935.6 | 3711.2 | 3871.2 | 639 | 1875.6 | 1955.6 | 3751.2        | 3911.2 | 739 | 1895.6 | 1975.6 | 3791.2        | 3951.2        |
| 540           | 1855.8 | 1935.8 | 3711.6 | 3871.6 | 640 | 1875.8 | 1955.8 | 3751.6        | 3911.6 | 740 | 1895.8 | 1975.8 | 3791.6        | 3951.6        |
| 541           | 1856   | 1936   | 3712   | 3872   | 641 | 1876   | 1956   | 3752          | 3912   | 741 | 1896   | 1976   | 3792          | 3952          |
| 542           | 1856.2 | 1936.2 | 3712.4 | 3872.4 | 642 | 1876.2 | 1956.2 | 3752.4        | 3912.4 | 742 | 1896.2 | 1976.2 | 3792.4        | 3952.4        |
| 543           | 1856.4 | 1936.4 | 3712.8 | 3872.8 | 643 | 1876.4 | 1956.4 | 3752.8        | 3912.8 | 743 | 1896.4 | 1976.4 | 3792.8        | 3952.8        |
|               | 1856.6 | 1936.6 | 3713.2 | 3873.2 | 644 | 1876.6 | 1956.6 | 3753.2        | 3913.2 | 744 | 1896.6 | 1976.6 | 3793.2        | 3953.2        |
| 545           | 1856.8 | 1936.8 | 3713.6 | 3873.6 | 645 | 1876.8 | 1956.8 | 3753.6        | 3913.6 | 745 | 1896.8 | 1976.8 | 3793.6        | 3953.6        |
| 546           | 1857   | 1937   | 3714   | 3874   | 646 | 1877   | 1957   | 3754          | 3914   | 746 | 1897   | 1977   | 3794          | 3954          |
|               | 1857.2 | 1937.2 | 3714.4 | 3874.4 | 647 | 1877.2 | 1957.2 | 3754.4        | 3914.4 | 747 | 1897.2 | 1977.2 | 3794.4        | 3954.4        |
|               | 1857.4 | 1937.4 | 3714.8 | 3874.8 | 648 | 1877.4 | 1957.4 | 3754.8        | 3914.8 | 748 | 1897.4 | 1977.4 | 3794.8        | 3954.8        |
| 549           | 1857.6 | 1937.6 | 3715.2 | 3875.2 | 649 | 1877.6 | 1957.6 | 3755.2        | 3915.2 | 749 | 1897.6 | 1977.6 | 3795.2        | 3955.2        |
| 550           | 1857.8 | 1937.8 | 3715.6 | 3875.6 | 650 | 1877.8 | 1957.8 | 3755.6        | 3915.6 | 750 | 1897.8 | 1977.8 | 3795.6        | 3955.6        |
| 551           | 1858   | 1938   | 3716   | 3876   | 651 | 1878   | 1958   | 3756          | 3916   | 751 | 1898   | 1978   | 3796          | 3956          |
|               | 1858.2 | 1938.2 | 3716.4 | 3876.4 | 652 | 1878.2 | 1958.2 | 3756.4        | 3916.4 | 752 | 1898.2 | 1978.2 | 3796.4        | 3956.4        |
| 553           | 1858.4 | 1938.4 | 3716.8 | 3876.8 | 653 | 1878.4 | 1958.4 | 3756.8        | 3916.8 | 753 | 1898.4 | 1978.4 | 3796.8        | 3956.8        |
|               | 1858.6 | 1938.6 | 3717.2 | 3877.2 | 654 | 1878.6 | 1958.6 | 3757.2        | 3917.2 | 754 | 1898.6 | 1978.6 | 3797.2        | 3957.2        |
| 555           | 1858.8 | 1938.8 | 3717.6 | 3877.6 | 655 | 1878.8 | 1958.8 | 3757.6        | 3917.6 | 755 | 1898.8 | 1978.8 | 3797.6        | 3957.6        |
| 556           | 1859   | 1939   | 3718   | 3878   | 656 | 1879   | 1959   | 3758          | 3918   | 756 | 1899   | 1979   | 3798          | 3958          |
| 557           | 1859.2 | 1939.2 | 3718.4 | 3878.4 | 657 | 1879.2 | 1959.2 | 3758.4        | 3918.4 | 757 | 1899.2 | 1979.2 | 3798.4        | 3958.4        |
|               | 1859.4 | 1939.4 | 3718.8 | 3878.8 | 658 | 1879.4 | 1959.4 | 3758.8        | 3918.8 | 758 | 1899.4 | 1979.4 | 3798.8        | 3958.8        |
| 559           | 1859.6 | 1939.6 | 3719.2 | 3879.2 | 659 | 1879.6 | 1959.6 | 3759.2        | 3919.2 | 759 | 1899.6 | 1979.6 | 3799.2        | 3959.2        |
| 560           | 1859.8 | 1939.8 | 3719.6 | 3879.6 | 660 | 1879.8 | 1959.8 | 3759.6        | 3919.6 | 760 | 1899.8 | 1979.8 | 3799.6        | 3959.6        |
| 561           | 1860   | 1940   | 3720   | 3880   | 661 | 1880   | 1960   | 3760          | 3920   | 761 | 1900   | 1980   | 3800          | 3960          |

| Ch  | TX     | RX     | VCO TX | VCO RX |    | Ch  | TX     | RX     | <b>VCO TX</b> | VCO RX |           | Ch  | TX     | RX     | VCO TX | VCO RX |
|-----|--------|--------|--------|--------|----|-----|--------|--------|---------------|--------|-----------|-----|--------|--------|--------|--------|
| 562 | 1860.2 | 1940.2 | 3720.4 | 3880.4 |    | 662 | 1880.2 | 1960.2 | 3760.4        | 3920.4 |           | 762 | 1900.2 | 1980.2 | 3800.4 | 3960.4 |
| 563 | 1860.4 | 1940.4 | 3720.8 | 3880.8 |    | 663 | 1880.4 | 1960.4 | 3760.8        | 3920.8 |           | 763 | 1900.4 | 1980.4 | 3800.8 | 3960.8 |
| 564 | 1860.6 | 1940.6 | 3721.2 | 3881.2 |    | 664 | 1880.6 | 1960.6 | 3761.2        | 3921.2 | Ī         | 764 | 1900.6 | 1980.6 | 3801.2 | 3961.2 |
| 565 | 1860.8 | 1940.8 | 3721.6 | 3881.6 |    | 665 | 1880.8 | 1960.8 | 3761.6        | 3921.6 | Î         | 765 | 1900.8 | 1980.8 | 3801.6 | 3961.6 |
| 566 | 1861   | 1941   | 3722   | 3882   | T  | 666 | 1881   | 1961   | 3762          | 3922   | Ī         | 766 | 1901   | 1981   | 3802   | 3962   |
| 567 | 1861.2 | 1941.2 | 3722.4 | 3882.4 | Ī  | 667 | 1881.2 | 1961.2 | 3762.4        | 3922.4 |           | 767 | 1901.2 | 1981.2 | 3802.4 | 3962.4 |
| 568 | 1861.4 | 1941.4 | 3722.8 | 3882.8 |    | 668 | 1881.4 | 1961.4 | 3762.8        | 3922.8 |           | 768 | 1901.4 | 1981.4 | 3802.8 | 3962.8 |
| 569 | 1861.6 | 1941.6 | 3723.2 | 3883.2 | Ī  | 669 | 1881.6 | 1961.6 | 3763.2        | 3923.2 | Ī         | 769 | 1901.6 | 1981.6 | 3803.2 | 3963.2 |
| 570 | 1861.8 | 1941.8 | 3723.6 | 3883.6 |    | 670 | 1881.8 | 1961.8 | 3763.6        | 3923.6 |           | 770 | 1901.8 | 1981.8 | 3803.6 | 3963.6 |
| 571 | 1862   | 1942   | 3724   | 3884   |    | 671 | 1882   | 1962   | 3764          | 3924   | Ī         | 771 | 1902   | 1982   | 3804   | 3964   |
| 572 | 1862.2 | 1942.2 | 3724.4 | 3884.4 |    | 672 | 1882.2 | 1962.2 | 3764.4        | 3924.4 |           | 772 | 1902.2 | 1982.2 | 3804.4 | 3964.4 |
| 573 | 1862.4 | 1942.4 | 3724.8 | 3884.8 |    | 673 | 1882.4 | 1962.4 | 3764.8        | 3924.8 | ľ         | 773 | 1902.4 | 1982.4 | 3804.8 | 3964.8 |
| 574 | 1862.6 | 1942.6 | 3725.2 | 3885.2 | T  | 674 | 1882.6 | 1962.6 | 3765.2        | 3925.2 | Ť         | 774 | 1902.6 | 1982.6 | 3805.2 | 3965.2 |
| 575 | 1862.8 | 1942.8 | 3725.6 | 3885.6 |    | 675 | 1882.8 | 1962.8 | 3765.6        | 3925.6 | Î         | 775 | 1902.8 | 1982.8 | 3805.6 | 3965.6 |
| 576 | 1863   | 1943   | 3726   | 3886   | T  | 676 | 1883   | 1963   | 3766          | 3926   | T         | 776 | 1903   | 1983   | 3806   | 3966   |
| 577 | 1863.2 | 1943.2 | 3726.4 | 3886.4 |    | 677 | 1883.2 | 1963.2 | 3766.4        | 3926.4 |           | 777 | 1903.2 | 1983.2 | 3806.4 | 3966.4 |
| 578 | 1863.4 | 1943.4 | 3726.8 | 3886.8 | T  | 678 | 1883.4 | 1963.4 | 3766.8        | 3926.8 | Ī         | 778 | 1903.4 | 1983.4 | 3806.8 | 3966.8 |
| 579 | 1863.6 | 1943.6 | 3727.2 | 3887.2 | T  | 679 | 1883.6 | 1963.6 | 3767.2        | 3927.2 | Ť         | 779 | 1903.6 | 1983.6 | 3807.2 | 3967.2 |
| 580 | 1863.8 | 1943.8 | 3727.6 | 3887.6 | 1  | 680 | 1883.8 | 1963.8 | 3767.6        | 3927.6 | Ť         | 780 | 1903.8 | 1983.8 | 3807.6 | 3967.6 |
| 581 | 1864   | 1944   | 3728   | 3888   | 1  | 681 | 1884   | 1964   | 3768          | 3928   | Ť         | 781 | 1904   | 1984   | 3808   | 3968   |
| 582 | 1864.2 | 1944.2 | 3728.4 | 3888.4 | 1  | 682 | 1884.2 | 1964.2 | 3768.4        | 3928.4 | ľ         | 782 | 1904.2 | 1984.2 | 3808.4 | 3968.4 |
| 583 | 1864.4 | 1944.4 | 3728.8 | 3888.8 | T  | 683 | 1884.4 | 1964.4 | 3768.8        | 3928.8 | Ť         | 783 | 1904.4 | 1984.4 | 3808.8 | 3968.8 |
| 584 | 1864.6 | 1944.6 | 3729.2 | 3889.2 | T  | 684 | 1884.6 | 1964.6 | 3769.2        | 3929.2 |           | 784 | 1904.6 | 1984.6 | 3809.2 | 3969.2 |
| 585 | 1864.8 | 1944.8 | 3729.6 | 3889.6 | 1  | 685 | 1884.8 | 1964.8 | 3769.6        | 3929.6 | t         | 785 | 1904.8 | 1984.8 | 3809.6 | 3969.6 |
| 586 | 1865   | 1945   | 3730   | 3890   | 1  | 686 | 1885   | 1965   | 3770          | 3930   | -         | 786 | 1905   | 1985   | 3810   | 3970   |
| 587 | 1865.2 | 1945.2 | 3730.4 | 3890.4 | 1  | 687 | 1885.2 | 1965.2 | 3770.4        | 3930.4 | Ť         | 787 | 1905.2 | 1985.2 | 3810.4 | 3970.4 |
| 588 | 1865.4 | 1945.4 | 3730.8 | 3890.8 | 1  | 688 | 1885.4 | 1965.4 | 3770.8        | 3930.8 | ľ         | 788 | 1905.4 | 1985.4 | 3810.8 | 3970.8 |
| 589 | 1865.6 | 1945.6 | 3731.2 | 3891.2 | 1  | 689 | 1885.6 | 1965.6 | 3771.2        | 3931.2 | Ť         | 789 | 1905.6 | 1985.6 | 3811.2 | 3971.2 |
| 590 | 1865.8 | 1945.8 | 3731.6 | 3891.6 | 1  | 690 | 1885.8 | 1965.8 | 3771.6        | 3931.6 | 1         | 790 | 1905.8 | 1985.8 | 3811.6 | 3971.6 |
| 591 | 1866   | 1946   | 3732   | 3892   | 1  | 691 | 1886   | 1966   | 3772          | 3932   | -         | 791 | 1906   | 1986   | 3812   | 3972   |
| 592 | 1866.2 | 1946.2 | 3732.4 | 3892.4 | 1  | 692 | 1886.2 | 1966.2 | 3772.4        | 3932.4 | Ť         | 792 | 1906.2 | 1986.2 | 3812.4 | 3972.4 |
| 593 | 1866.4 | 1946.4 | 3732.8 | 3892.8 | 1  | 693 | 1886.4 | 1966.4 | 3772.8        | 3932.8 | t         | 793 | 1906.4 | 1986.4 | 3812.8 | 3972.8 |
| 594 | 1866.6 | 1946.6 | 3733.2 | 3893.2 | 1  | 694 | 1886.6 | 1966.6 | 3773.2        | 3933.2 | T         | 794 | 1906.6 | 1986.6 | 3813.2 | 3973.2 |
| 595 | 1866.8 | 1946.8 | 3733.6 | 3893.6 | 1  | 695 | 1886.8 | 1966.8 | 3773.6        | 3933.6 | +         | 795 | 1906.8 | 1986.8 | 3813.6 | 3973.6 |
| 596 | 1867   | 1947   | 3734   | 3894   |    | 696 | 1887   | 1967   | 3774          | 3934   | +         | 796 | 1907   | 1987   | 3814   | 3974   |
| 597 | 1867.2 | 1947.2 | 3734.4 | 3894.4 | 1  | 697 | 1887.2 | 1967.2 | 3774.4        | 3934.4 | Ť         | 797 | 1907.2 | 1987.2 | 3814.4 | 3974.4 |
| 598 | 1867.4 | 1947.4 | 3734.8 | 3894.8 | 1  | 698 | 1887.4 | 1967.4 | 3774.8        | 3934.8 | t         | 798 | 1907.4 | 1987.4 | 3814.8 | 3974.8 |
| 599 | 1867.6 | 1947.6 | 3735.2 | 3895.2 | 1  | 699 | 1887.6 | 1967.6 | 3775.2        | 3935.2 | t         | 799 | 1907.6 | 1987.6 | 3815.2 | 3975.2 |
| 600 | 1867.8 | 1947.8 | 3735.6 | 3895.6 | +  | 700 | 1887.8 | 1967.8 | 3775.6        | 3935.6 | 1         | 800 | 1907.8 | 1987.8 | 3815.6 | 3975.6 |
| 601 | 1868   | 1948   | 3736   | 3896   | +  | 701 | 1888   | 1968   | 3776          | 3936   | -         | 801 | 1908   | 1988   | 3816   | 3976   |
| 602 | 1868.2 | 1948.2 | 3736.4 | 3896.4 | +  | 702 | 1888.2 | 1968.2 | 3776.4        | 3936.4 | +         | 802 | 1908.2 | 1988.2 | 3816.4 | 3976.4 |
| 603 | 1868.4 | 1948.4 | 3736.8 | 3896.8 | +  | 703 | 1888.4 | 1968.4 | 3776.8        | 3936.8 | +         | 803 | 1908.4 | 1988.4 | 3816.8 | 3976.8 |
| 604 | 1868.6 | 1948.6 | 3737.2 | 3897.2 | +  | 704 | 1888.6 | 1968.6 | 3777.2        | 3937.2 | +         | 804 | 1908.6 | 1988.6 | 3817.2 | 3977.2 |
| 605 | 1868.8 | 1948.8 | 3737.6 | 3897.6 | +  | 705 | 1888.8 | 1968.8 | 3777.6        | 3937.6 | $\dagger$ | 805 | 1908.8 | 1988.8 | 3817.6 | 3977.6 |
| 606 | 1869   | 1949   | 3738   | 3898   | +  | 706 | 1889   | 1969   | 3778          | 3938   | +         | 806 | 1909   | 1989   | 3818   | 3978   |
| 607 | 1869.2 | 1949.2 | 3738.4 | 3898.4 | +  | 707 | 1889.2 | 1969.2 | 3778.4        | 3938.4 | +         | 807 | 1909.2 | 1989.2 | 3818.4 | 3978.4 |
| 608 | 1869.4 | 1949.4 | 3738.8 | 3898.8 | +  | 708 | 1889.4 | 1969.4 | 3778.8        | 3938.8 | +         | 808 | 1909.4 | 1989.4 | 3818.8 | 3978.8 |
| 609 | 1869.6 | 1949.6 | 3739.2 | 3899.2 | +  | 709 | 1889.6 | 1969.6 | 3779.2        | 3939.2 | +         | 809 | 1909.6 | 1989.6 | 3819.2 | 3979.2 |
| 610 | 1869.8 | 1949.8 | 3739.6 | 3899.6 | +  | 710 | 1889.8 | 1969.8 | 3779.6        | 3939.6 | +         | 810 | 1909.8 | 1989.8 | 3819.6 | 3979.6 |
| 611 | 1870   | 1950   | 3740   | 3900   | 1  | 711 | 1890   | 1970   | 3780          | 3940   | 1         | 3.0 |        |        | 30.0.0 | 50.0.0 |
|     |        |        |        | L      | _1 |     |        |        |               |        |           |     |        |        |        |        |

# **Alignment**

# HDbc2 Manual Align with Phoenix


In Phoenix, select connection FBUS and Product Enigma. If you power up the board before selecting FBUS, it works without any error messages. Use Test jig or other device for RF and bus connection. Attenuation in test jig RF connector alone is 0.3dB for 850 and 0.7dB for 1900. Use a RCT (radio communication tester), spectrum analzyer, or another suitable device for tuning or testing the phone. The default channels are 190 for GSM850 and 661 for GSM1900. The alignments and calibrations must be performed

### in the order shown to give reliable results.

The way to save data to the phone and to load data from the phone is different in the various tuning procedures. Always look at what is shown in the windows regarding these issues and act accordingly.

To vary a selected parameter you can use + and - key or in some cases directly type the new value. + and - steps the value for every press. Repeat function seems not to work. In I/Q you can use the side arrows.

#### VCO Calibration

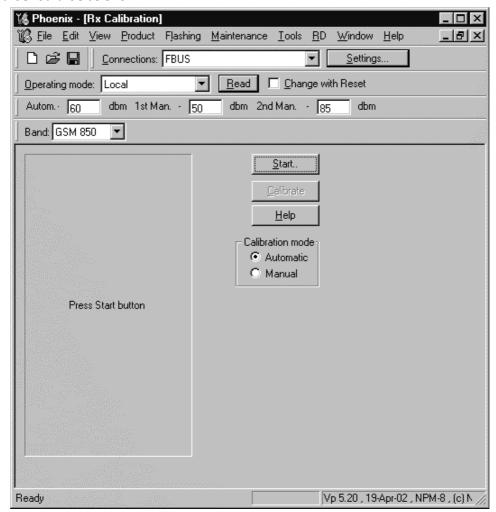


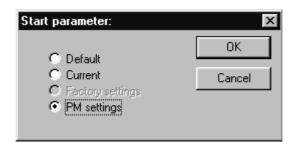
Select Maintenance, Tuning, VCO Calibration

Lowest Fmin freq must be less than 3296 MHz

Highest Fmax frequency must be greater than 3980 MHz

- 1) Get Values
- 2) Calibrate
- 3) Update PMM


End by closing the window

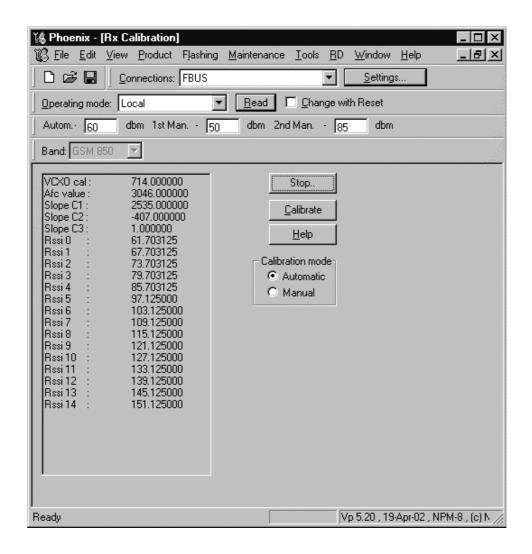

#### **RX Calibration**

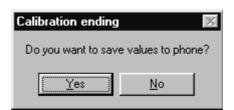
Select Maintenance, Tuning, RX Calibration

Select Band GSM850. Note that GSM850 must be calibrated before PCS1900.

The result should be as shown





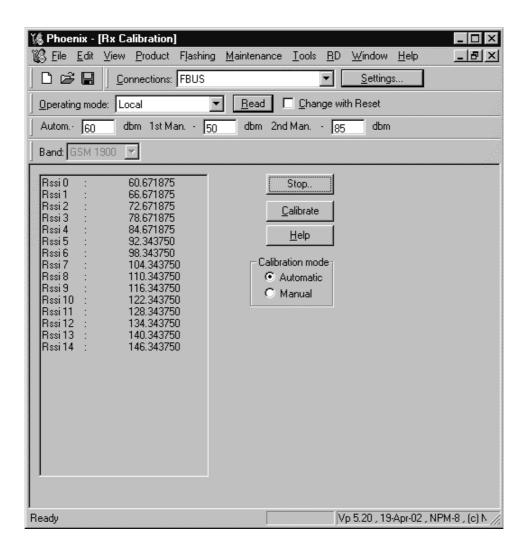


Select Automatic, set to 60dBm in small Autom. window in top bar

Start and select PM settings in the start parameters that pops up

OK

9. Troubleshooting






The existing data in the phone is shown

Calibrate, and the new data is shown

Press Stop, and the little window pops up where you can select to save or not

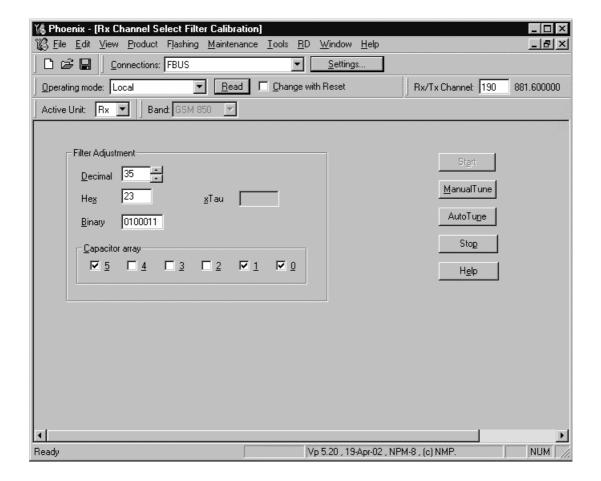
Select GSM1900 in the top bar and repeat at channel 661

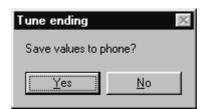


The existing data in the phone is shown

Calibrate, and the new data is shown

Press Stop, and the little window pops up where you can select to save or not


#### **RX Channel Select Filter**


Select Maintenance, Tuning, Rx Channel Select Filter Calibration

Next, select to load values from the phone or not.

Press AutoTune

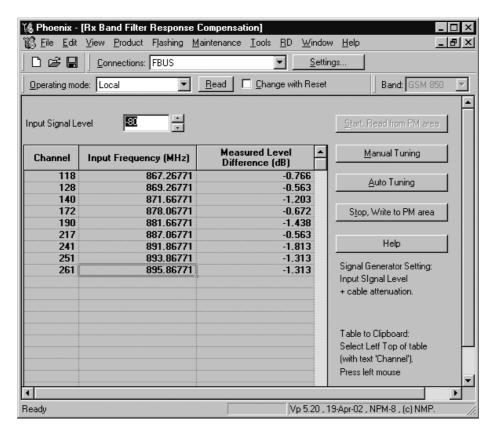
Press Stop and you can select to save values to the phone or not.



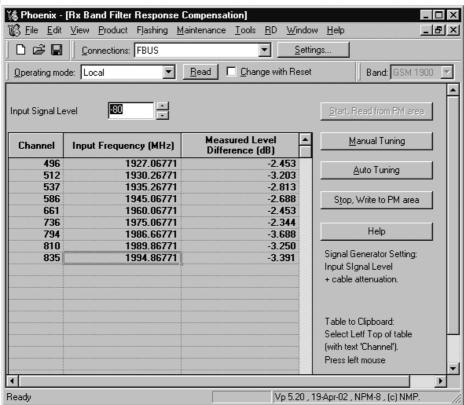


Note: This calibration requires no input signal

### **RX Band Filter Response**


Select Maintenance, Tuning, Rx Band Filter Response Compensation

Press Start, Read from PM area and you can select to load values from the phone or not.


**Press Manual Tuning** 

Set the Signal generator according to the pop-up windows.

When finished press Stop, Write to PM area and you can select to save values to the phone or not.



#### Repeat for GSM1900



Note: This calibration requires a lot of different frequencies from the generator. If you have a signal generator with a frequency list option, you can use Auto Tuning (Dwell should be around 10ms).

### Tx Tuning

NPM-8

Phoenix menu: Select Maintenance, Tuning, Tx Power Level Tuning

Settings and considerations for tuning with a spectrum analyzer:

A DC block and at least 10 dB attenuator should be used on the RF input port to protect the spectrum analyzer.

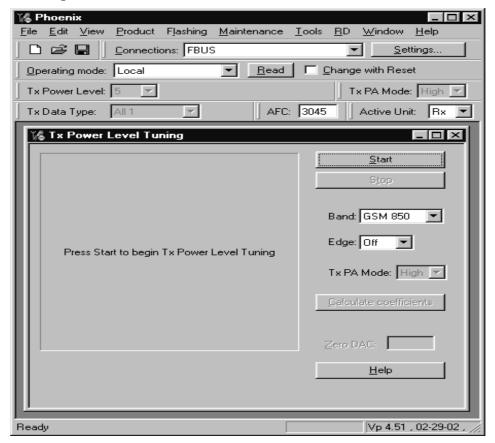
The burst power should be measured, so a span of 0 Hertz is used.

Span: 0 Hertz

Resolution Bandwidth 1 MHz

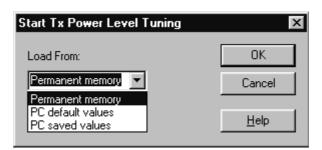
Video Bandwidth 1 MHz

Sweeptime 10 msec


RF Attenuation: 30 dB

Reference level: If you set this to 40 dBm, you can tune both the low band (target output power of 32.0 dBm for power level 5) and highband (target output power of 29.5 dBm for power level 0) at the maximum output levels. The reference level must be reduced to the 0 dB level when tuning the base level.

Trigger: Video. Set the level to 0 dbm. This must be lowered when you are setting the base level (Base level target output power of -30 dBm). If you don't lower the video trigger level to below -30 dBm when tuning the base level, the spectrum analyzer will not be triggered when you are tuning the base level.

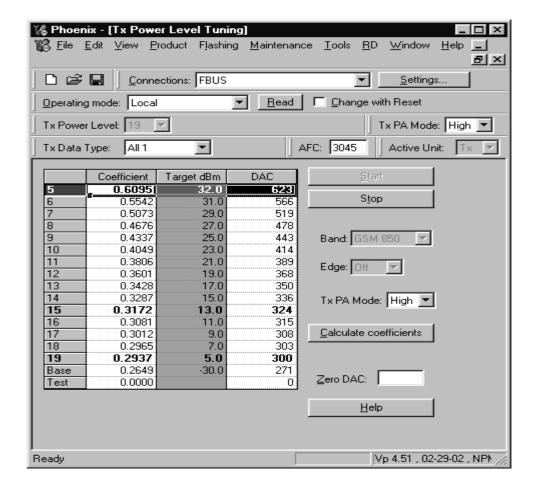

Center Frequency: 836.6 MHz (For GSM 850 band, channel 190 is used for Tx output power tuning). For GSM 1900, Center frequency is 1880 MHz (mid Channel 661) for Tx output power tuning.

### TX Power Tuning GSM850



Select edge off, band GSM850

Press Start.



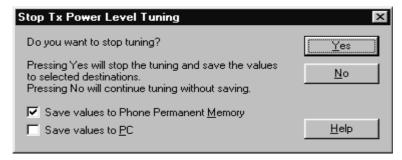

Select from where to load values. Permanent memory is the values that are stored in the phone's memory. PC default values are the default values in the computer used to tune the phones. A set of properly tuned coefficient values can be saved to the PC. The PC saved values can be used to tune multiple phones using the same set of values.

Click OK.

(Note: power level 5 should be tuned to 32.0dBm)






Select the modulation 1, 0 or random in Tx Data Type. Select random if a GSM tester is used. Then it can be synchronised to the burst.

Select Tx PA Mode High. Note that Low PA Mode tuning is not to be used.

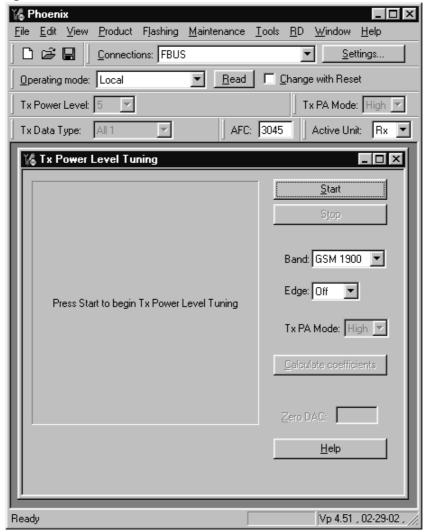
First power tuning should be setting base level to -30dBm.

Tune the highlighted values (in **BOLD**) to the wanted power (Use average burst power)

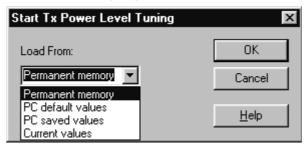
Push 'calculate coefficients' soft key to compute tuning coefficient for power levels that are not tuned manually or with the tester. (These are the coefficients that are not in bold).



Push 'stop' soft key to finish tuning power levels.


If you are satisfied with the coefficients and the power output tuning, then check the box "Save to the phone permanent memory".

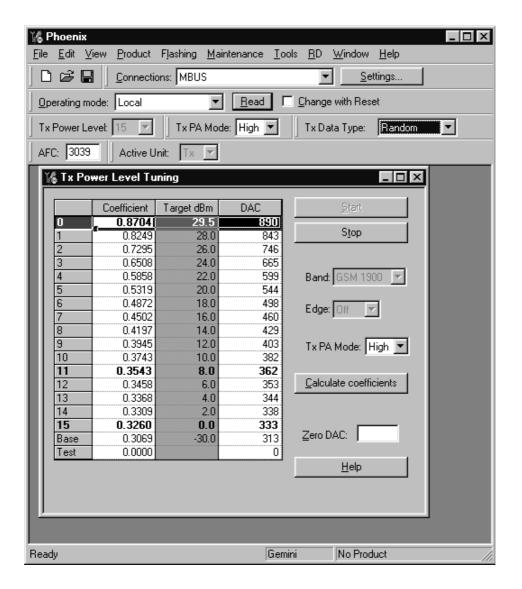
You can also save the table to the PC, by checking the box "Save value to PC" so that you can load it to another phone. Or you can select not to do anything by removing both ticks.


The only way to end the tuning session is by clicking 'Yes' soft key. This ends the tuning regardless of whether you save the values to the phone permanent memory, to the PC, or neither.

### 9. Troubleshooting

### TX Power Tuning PCS1900




Select edge off, band GSM 1900 (PCS)



Press Start and select from where to load values. Permanent memory is the values that are stored in the phone's memory. PC default values are the default values in the computer used to tune the phones. A set of properly tuned coefficient values can be saved to the pc. The PC saved values can be used to tune multiple phones using the same set of values.

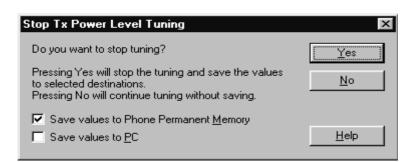
Click OK.

(Note: power level 0 should be tuned to 29.5dBm)



Select the modulation 1, 0 or random in Tx Data Type. Select random if a GSM tester is used. Then it can synchronise to the burst.

Select Tx PA Mode High.


First, tune base level to -30dBm.

Tune the highlighted values (in **BOLD**) to the wanted power (Use average burst power)

Push 'calculate coefficients' soft key to compute tuning coefficient for power levels that are not tuned manually or with the tester. (These are the coefficients that are not in bold).

Push 'stop' soft key to finish tuning power levels.

NPM-8



If you are satisfied with the coefficients and the power output tuning, then check the box "Save to the phone permanent memory".

You can also save the table to the PC, by checking the box "Save values to PC", so that you can load it to another phone. Or you can select not to do anything by removing both ticks.

The only way to end the tuning session is by clicking 'Yes' soft key. This ends the tuning regardless of whether you save the values to the phone permanent memory, to the PC, or neither.

# TX I/Q Tuning

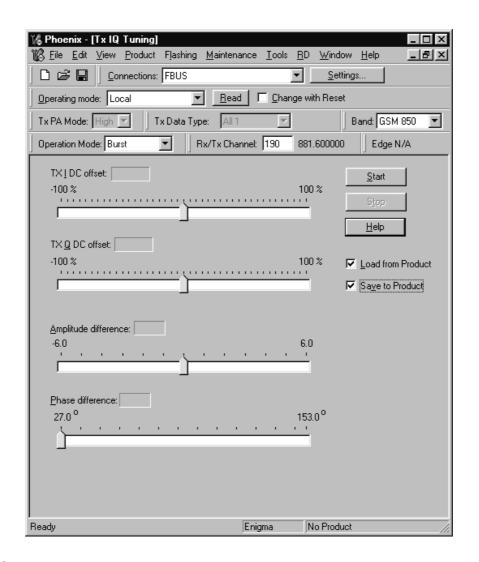
Phoenix Menu: Select Maintenance, Tuning, Tx IQ tuning

Settings for spectrum analyzer for I/Q tuning:

Same center frequencies are used for GSM 850 (Ch190 = 836.6 MHz) and 1900 (Ch661 = 1880 MHz) as in Tx output power tuning.

Span 200 kHz

RBW 10 kHz


VBW 1 kHz

Sweeptime .5 seconds

RF attenuation 20 dB

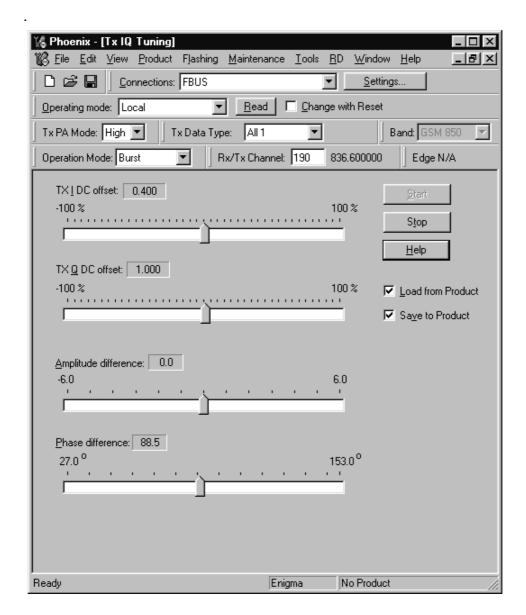
Reference level 30 dBm

Trigger: free run



Select where to get values. Normally select Load From Product

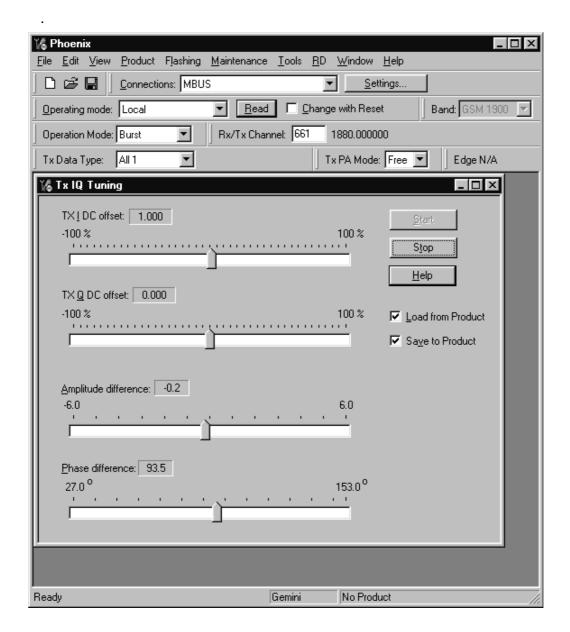
Push "Start" soft key.


Tune I and Q DC offset values to reduce the carrier frequency to a minimum. Use Side arrows or +, -. Carrier must be at least -30 dBc. Typically carrier supression is better than -40 dBc.

Tune Amplitude and phase difference to reduce the lowest sideband frequency. The sideband must be reduced at least –35 dBc. Typically sideband supression is better than –40 dBc.

Check the IQ tuning values meet the specifications for both 1 and 0 data types

NPM-8


**CCS Technical Documentation** 



Remember to check the box "Save to Product" if you want to save the tuning values to the phone.

Push "Stop" softkey. This ends tuning and saves the values to the phone if you have selected the "save to product" box.

Same procedure is used for PCS1900 as for GSM. Channel will be 661, as shown in the following diagram, with some typical tuning values.



#### **RF Control**

Phoenix menu: Select Maintenance, Testing, RF Controls

It is meant to check the receiver or transmitter without going in a call. It works very much like a call, but you have control via the PC, and not via the tester. The GSM850 TX PA mode should be set to High.

If you want to tune at other channels than the default, then you must select it first in RF control and then start the tuning.





## **Call Testing**

If all tunings are done, and the phone TX and RX are working, a call is the ultimate test of the phone.

Set the communications tester to manual test. Switch the phone to normal if it was in local mode. Remember to have a test simcard in the phone.

After the phone has registered to the communications tester, a call can be made. It is possible to let the phone answer via Phoenix. In the Autocaller (Maintenance Testing) you can answer by ticking Answer when button pushed and then pushing the button.